Technical Notes

Converting Erdélyi [1] to Bracewell [2, 3]

Erdélyi defined his Hankel transform of order vV as [1]:

g = [ f(, (o) (0 V2 dx

In this project, we just consider all the Hankel transforms of order 0. We unify the Erdélyi version
into Bracewell’s version [2, 3], which is more easily related to standard Fourier transform
notation.

>  For f(x), we divided the functions by x/?, and change x to 277 .
»  For the Hankel transform, we divided the functions by Zerl/z, and then change y to ¢

directly.

Classification

For each function we made, we also marked its classification for the following criteria as true or
false:

1) Oscillating

2) Finite domain

3) Singularity

4) Non negative

5) Monotonic

6) Eigen function

You can use our search engine to find the functions which fit your own criteria.

Notes

1) The range we chose for graphing each function is » or g =2x5",nEZ, based on the

extent of each function.

For example, when n=-1,r=2x5"=0.4;whenn=0, r=2x5"=2

So in our project, you can only find the range equal to 0.4, 2, 10, and 50 (maximum).

2) All the functions were made using Mathematica (Wolfram Research, Champaign, IL, USA),
and for plotting purposes the Dirac Delta function is given a width of 0.2 and height of 1000.

3) All the functions are verified using numerical integration except for a few which are
impossible to verify by numerical integration (for example the Dirac Delta function
(bracewell_pg249_3)).

4) II function’s definition
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Orthogonal polynomials
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z in the complex plane cut along the real axis from -1 to 1.

1 1+x ot . 1 1
Pv”(x)=r(1-ﬂ)(ﬁ) 2E(—v,v+l,1—ﬂ,é—éx),—l<x<1

1 1
0" (x)= %e""‘” [e_zl'va” (x+i0)+ eEWQV” (x —iO)] ,—l<x<l

P (2)=P'(2).0,(z) =0 (2).
Bessel functions and related functions
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Y (z) =CcosecvrT [Jv (z)coswr— J_, (z)]
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Modified Bessel functions
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Kelvin’s and related functions
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Struve’s functions
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8) Hypergeometric functions
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E(a,b;c;z) is Gauss’denoted by hypergeometric series and is often denoted by

F(a,b;c;z).
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s (a,b; c;z) is Kummer’s confluent hypergeometric series and is sometimes denoted by

D (a;c;z).

Confluent hypergeometric functions

Whittaker’s function
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Parabolic cylinder functions
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sil(x) = —Lw¥dt =2ii[Ei(ix)_Ei(_ix)]

Ci(x) =~ 2L dr = ci(x) = = [Ei (ix) + Ei (ix)]
x 2i
Elliptic functions and integrals

K(k)=ﬁ)%”(1—k2 sin2¢)_% do = 12n2171(y,y;1;k2)
E(k)=ﬁ)%ﬂ(1—k2sin2¢)% do = lznzFl(—y,y;l;kz)

Errors/Typos in books

1)

2)

3)

4)

erdelyi_8.2_17: Added to the 2u power to the end, this has been verified by numerical
integration.
erdelyi_8.2_38: Changed a’ toa. There is no reason for the squared there. Added a>0
constraint to compensate.
erdelyi_8.2_39: Changed a’ toa.There is no reason for the squared there. Added a>0
constraint to compensate.

Added a negative sign to F'(g), numerical integration showed that it

was missing the negative sign

erdelyi_8.2_46: b>0 is required, numerical integration fail for b=-1, (a<0 is fine since all a
term is square of symmetric)



5) erdelyi_8.2_47: Changed a® toa. There is no reason for the squared there. Added a>0

constraint to compensate.

6) erdelyi_8.3_4: Replace x%in Hankel transform function to yz.

7) erdelyi_8.3_7: Replace x%in Hankel transform function to yz.

8) erdelyi_8.3_43: For F'(q), multiply factor 2, verified by numerical integration.

9) Bracewell Page335 Fig. 13.3 replace n(v) by \/%5 (Jr—v)+ \/%5 (.71’+v).
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