Tutorial

Many of the linear transforms in common use have a direct connection with either the Fourier or
the Laplace transform [1-7]. The closest relationship is with the generalizations of the Fourier
transform [8] to two or more dimensions, and with the Hankel transforms [9] of the zero and
higher orders, into which the multidimensional Fourier transforms degenerate under
circumstances of symmetry.

The two-dimensional Fourier transform

The variable x may stand for some physical quantity such as time or frequency, which is
essentially one-dimensional, or it may be the coordinate in a one-dimensional physical system
such as a stretched string or an electrical transmission line. However, in cases which are two
dimensional-stretched membranes, antennas and arrays of antennas, lenses and diffraction
gratings, pictures on television screens, and so on, more general formulas apply.

A two-dimensional function f'(x, y) has a two-dimensional transform F'(u,v), and between

the two the following relations exist:
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These equations describe an analysis of the two-dimensional function f(x,y) into
components of the form exp[i277(ux + vy)]. Since any such component can be split into cosine
and sine parts, we may begin by considering a cosine component cos[ 27z (ux + vy)].

The magnitude of F'(u,,V,) tells us how much f(x,y) looks like a cosine function heading

in the direction 6= arctan(vo/uo). For example, if f(x,y)=cos[2z(xcosf + ysinb)],

then F'(u,v) is a pair of impulses located at an angle 6 with respect to the U -axis (see

Figure 1).



Figure 1 2-Dimensional Fourier transform pair

As a second example of a two-dimensional function, consider the height of the ground at the

geographical point (x,y), over the area occupied by the mountain which is conventionally

represented in Figure 2 by contours of constant height. The function cos[27z(u,x +V,))]

represents a consinusoidally corrugated land surface whose contours of constant height coincide
with lines whose equation is

UyX +Vv,y = const

The corrugations face in a direction that makes an angle arctan(vo/uo )with the x axis and

their wavelength is(u§+v§) 2, If a section is made through the corrugations, in the x

direction, it will undulate with a frequency of u, cycles per unit of x. Similarly, v, may be

interpreted as the number of cycles per unit of #,,inthe y direction.

In Figure 2, a prominent Fourier component of the mountain is shown. In the transform domain
the complex component is characterized in wavelength and orientation by the point (u,v) in

the u —v plane and its amplitude by F'(u,v). The interpretation of u# and v as spatial
frequencies is emphasized by dimensioning ' andv™', the wavelengths of sections taken in
the x and y direction, respectively (see Figure 2). The second of the Fourier relations quoted
above asserts that a summation of corrugations of appropriate wavelengths and orientations,
taken with suitable amplitudes, can reproduce the original mountain. The sinusoidal components,
which must also be included, allow for the possibility that the corrugations may have to be slid
into appropriate spatial phases.
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Figure 2 A mountain (left) and a prominent Fourier component thereof (right)

Schwarz’s Inequality

Another way to think about the meaning of F(uo,vo) as a large or small number compared to
a sinusoid, is to consider Schwarz’s Inequality. Let 9,(x) and ,(x) be any two real

integrable function in [a,b], then Schwarz’s Inequality is given by

IRZSZ (x)dx]z < [T dxf [p.0] dx

When equality iff* ,(x) = ay,(x) with @ a constant. Thus, if 3, =f(x,y) and
—i 2
1/j2 =@ 12”(“°x+v°y), then |F(MO,VO )| reaches a maximum when f(x,y) approaches a

sinusoid with wavelengths and angle matching (uo,vo ) Schwarz’s Inequality is also called

the Cauchy-Schwarz inequality or Buniakowsky inequality.

® iff* : If and only if (i.e., necessary and sufficient). The terms "just if" or "exactly when" are
sometimes used instead.



Theorems for the two-dimensional Fourier transform [2]
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The finite differences in the table are defined as follows:

A S (53)= G+ 3.0 f(x=2.0)
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The following table illustrates a number of two-dimensional Fourier transforms.
f(x,y) F(u,v)
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The Hankel Transform of Zero Order [2]

Two-dimensional systems may often show circular symmetry; for example, optical systems are
often constructed from components that, in themselves, are circularly symmetrical. Then again,
waves spreading out in two dimensions from a source of energy exhibit symmetry for natural
reasons. It may be expected that in these cases a simplification will result, for one radial variable




will suffice in place of the two independent variables x and y. The appropriate expression of such
problems is in terms of the Hankel transform, a one-dimensional transform with Bessel function

kernel.

When circular symmetry exists, that is, when

Sy) =1,
Where 7% =x° +y2,

Then F'(u,v) proves also to be circularly symmetrical; that is.

F(u,v)=F(q),
Where q2 =u’ +v2,

To show this, change the transform formula to polar coordinates and integrate over the angular
variable. Then the relations between the two one-dimensional functions f(») and F(g) are

F(g)= Zﬂﬁ: f("J, (2ﬂ'qr)rdr

f(r=2n ﬁj F(q)J,(2mqr)qdq

We refer to F(g)as the Hankel transform(of zero order) of f(r) and note that the

transformation is strictly reciprocal, as was the case when the kernels were cos and sin. The

kernelJO, together with cos, sin, and others, is referred to as a Fourier kernel in the broad

sense of a kernel associated with a reciprocal transform.

The factors 277 in the above formulas may be canceled by suitable redefinition of the variables,
but their retention follows logically from the form adopted for Fourier transforms. In physical

situations the 257 in parentheses will be found to result from the measurement of ¢ in whole

cycles per unitof 7.The 2 before the integral sigh comes from the element of area 27zrdr .

Theorems for the Hankel transform

Theorem f() F(q)
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