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Abstract

We are interested in the inconsistencies that can arise in the con-
text of rank-based multiple comparisons. It is well known that these
inconsistencies exist, but we prove that every possible distribution-
free, rank-based multiple comparison procedure with certain reason-
able properties is susceptible to these phenomena. The proof is based
on a generalization of Arrow’s Theorem, a fundamental result in so-
cial choice theory which states that when faced with three or more
alternatives, it is impossible to rationally aggregate preference rank-
ings subject to certain desirable properties. Applying this theorem to
treatment rankings, we generalize a number of existing results in the
literature and demonstrate that procedures that use rank sums can-
not be improved. Finally, we show that best possible procedures are
based on the Friedman rank statistic and the k-sample sign statistic,
in that these statistics minimize the potential for paradoxical results.
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1 Introduction

We are interested in distribution-free rank-based multiple comparisons, which

is an idea that goes back to Kramer (1956) and which was first surveyed by

Nemenyi (1963). In these procedures, objects (treatments) are ranked, and

the sum of the ranks is determined for each object. Those with signifi-

cantly large rank sum differences are declared to be different (McDonald &

Thompson 1967).

Distribution-free rank sum multiple comparisons have been developed for

both one- and two-way layouts. Ranks in the one-way layout can be applied

either in a pairwise fashion (only the observations from the ith and jth

treatments are ranked, and the rankings must be redone when the comparison

moves to the next pair) or jointly (observations from all k treatments are

ranked from smallest to largest). Similarly, ranks in the two-way layout can

be applied either in a pairwise fashion or within the blocks. Some well-

known examples of the kinds of procedures we consider are listed in Table 7

in Appendix 1.

Both methods of assigning ranks—pairwise and jointly—have well-known

drawbacks (Lehmann 2006, Miller 1981). When observations are ranked

in a pairwise fashion, an inconsistency known as cycling can arise where

treatment j is declared superior to treatment i and treatment k superior

to j, but without k being superior to i. When observations are ranked

jointly or within blocks, the significance of a comparison between a pair of

treatments depends upon the observations from treatments not involved in

the comparison. Thus, results may change depending upon the number of

treatments being considered. This type of inconsistency is known as the

problem of irrelevant alternatives.

The point of this paper is to demonstrate that these inconsistences can

be explained as a generalization of a fundamental result in social choice

theory due to Arrow (1963). In doing so, we generalize earlier findings

by Haunsperger (1992), Haunsperger (1996), and Taplin (1997), who focus



mainly on characterizing the kinds of inconsistencies that can occur for a

particular choice of statistical test. Specifically, our result shows that no

distribution-free rank sum procedure (hereafter, we use the shorthand “test”)

with certain reasonable properties exists that always avoids both types of in-

consistency. Thus, the choice of a statistical test in these situations involves

a tradeoff between the possibility of dependence on irrelevant alternatives

and the possibility of cycling. We also show that the tests that minimize

these inconsistencies are based on either the Friedman rank statistic or the

k-sample sign statistic.

2 Examples

Examples of the paradoxes that can arise through use of rank-based proce-

dures have been identified by several authors in the statistical literature; our

review is correspondingly brief.

As an example of the inconsistency that can result when treatments are

ranked jointly or within blocks, consider the data on the effectiveness of hyp-

nosis in Table 1. The emotions of fear, happiness, depression, and calmness

were requested (in random order) from each of eight subjects during hypnosis

(Lehmann 2006, 264).

Table 1: Effectiveness of hypnosis (Lehmann 2006, 264). The data are skin
potential (adjusted for initial level) measured in millivolts.

Subject 1 2 3 4 5 6 7 8
Fear 23.1 57.6 10.5 23.6 11.9 54.6 21.0 20.3
Happiness 22.7 53.2 9.7 19.6 13.8 47.1 13.6 23.6
Depression 22.5 53.7 10.8 21.1 13.7 39.2 13.7 16.3
Calmness 22.6 53.1 8.3 21.6 13.3 37.0 14.8 14.8

Given that the data are blocked, a Friedman-type multiple comparison is

appropriate (Nemenyi 1963). The results of the multiple comparison proce-
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dure are in Table 2. When all four treatments are compared (columns 2 and

3), none of the contrasts are statistically significant.

Table 2: Multiple Comparisons for the data in Table 1. When four treatments
are compared (left side of the table), none of the contrasts are statistically
significant. When one treatment is dropped (the right side of the table), the
difference between treatments 1 and 3 is now statistically significant.

Treatments 1,2,3,4 (r0.05 = 13.62) 1,2,3 (r0.05 = 9.58)
Comparison Obs. Diff. Sig. Obs. Diff. Sig.
1 against 2 7 No 5 No
1 against 3 8 No 10 Yes
1 against 4 13 No - -
2 against 3 1 No 5 No
2 against 4 6 No - -
3 against 4 5 No - -

When the fourth treatment (calmness) is dropped (columns 4 and 5),

however, the difference between treatment 1 (fear) and treatment 3 (depres-

sion) is now statistically significant. That is, the statistical finding that the

fear outcome differs from the depression outcome depends on whether or not

the analyst includes the calmness treatment in his or her analysis.

It is important to understand that it is not just the outcome of the test

that may be inconsistent; the ranks sums, themselves, can demonstrate this

same kind of inconsistency. Consider the data in Table 3. The ranks are

assigned within the 7 blocks, and in the first four columns, the ranks are

synonymous with the data. The treatments are ranked M3 ≺ M2 ≺ M1 ≺
M4. In columns 5 though 7, treatment 4 is dropped, and the data are ranked

again. This time, the treatments are ranked M1 ≺ M2 ≺ M3. Notice that

in this instance the entire ordering of treatments 1, 2, and 3 are reversed by

dropping the treatment with the highest rank sum, M4, from the analysis.

These kinds of inconsistencies happen not only with Friedman-type ranks,

but also with joint ranks (Kruskal-Wallis). Consider the data in Table 4 taken

from Haunsperger (1992). The 9 × 4 = 36 observations are jointly ranked
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Table 3: Friedman Ranks. Columns 2-5 contain the data, which are synony-
mous with their with-in block ranks. M4 is dropped in columns 6-8, and the
data are reranked. The rank sums in the last row demonstrate the reversal:
M3 ≺M2 ≺M1 ≺M4 versus M1 ≺M2 ≺M3.

Subject M1 M2 M3 M4 M1 M2 M3

1 1 2 3 4 1 2 3
2 4 1 2 3 3 1 2
3 3 4 1 2 2 3 1
4 1 2 3 4 1 2 3
5 4 1 2 3 3 1 2
6 3 4 1 2 2 3 1
7 1 2 3 4 1 2 3

Rank Sum 17 16 15 22 13 14 15

Table 4: Kruskal-Wallis data (Haunsperger 1992, 151).

Subject C1 C2 C3 C4

1 4.20 4.38 4.12 4.04
2 4.32 4.23 4.10 4.42
3 4.07 4.14 4.16 4.44
4 4.11 4.08 4.40 4.02
5 4.22 4.18 4.19 4.00
6 4.46 4.30 4.24 4.41
7 4.29 4.25 4.21 4.45
8 4.33 4.13 4.34 4.06
9 4.15 4.43 4.37 4.03

in the first four columns of Table 5. Based on the sum of these joint ranks,

the four treatments have the following ordering: C3 ≺ C2 ≺ C1 ≺ C4. When

treatment 4 is dropped, however, the ordering based on joint ranks reverses

for the remaining three treatments: C1 ≺ C2 ≺ C3.

One way to avoid this phenomenon is to compare treatments two at a

time, rather than jointly. That is, instead of ranking all treatments and using

these rankings to compare treatments, an alternative approach is to simply
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Table 5: . The Kruskal-Wallis data in Table 4 are jointly ranked in columns
1-4. C4 is dropped, and the data are reranked in columns 5-7. The rank
sums in the last row demonstrate the reversal: C3 ≺ C2 ≺ C1 ≺ C4 versus
C1 ≺ C2 ≺ C3.

Subject C1 C2 C3 C4 C1 C2 C3

1 17 29 10 4 12 24 5
2 25 20 8 32 20 15 3
3 6 12 14 34 1 7 9
4 9 7 30 2 4 2 25
5 19 15 16 1 14 10 11
6 36 24 21 31 27 19 16
7 23 22 18 35 18 17 13
8 26 11 27 5 21 6 22
9 13 33 28 3 8 26 23

Rank Sum 174 173 172 147 125 126 127

compare each pair of treatments separately. Unfortunately, this method,

known as pairwise ranking, gives rise to a different kind of inconsistency.

Consider the data in the first three columns of Table 6 taken from Lehmann

(2006, 245). When the rank sums are computed, X ≺ Y , Y ≺ Z, but

X � Z. Thus, we conclude that X is significantly better than Y and Y is

significantly better than Z, but also that Z is significantly better than X.

Thus, the pairwise ranking approach fails to generate a sensible ordering of

the treatments.

3 Desirable Properties of Tests

Our approach is to first define some intuitively appealing properties that

any reasonable test should possess and then show that, in fact, there is no

distribution-free test that possesses all of these properties.

Suppose that we have n units of observation that each have been exposed

to k treatments. This setup comprises the one-way layout with k general
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Table 6: Pairwise Ranks. The data in columns 1-3 (Lehmann 2006, 245) are
ranked in pairs in columns 4-9. The rank sums in the last row demonstrate
the inconsistency: X ≺ Y , Y ≺ Z, and X � Z.

Data Paired Rankings
Subject X Y Z X Y Y Z X Z

1 2 4 1 1 3 2 1 2 1
2 3 5 7 2 4 3 5 3 4
3 9 6 8 6 5 4 6 6 5

Rank Sum 9 12 9 12 11 10

alternatives as well as the two-way layout with k general alternatives known

as a randomized complete block design. See Hollander & Wolfe (1999) for a

complete overview.

Formally, the data consist of nk observations, where Xim is the ob-

servation of the ith unit under the mth treatment, for i = 1, . . . , n and

m = 1, . . . , k. Thus, the observations are the rows and the treatments are

the columns. For simplicity, we assume that the value of each observation

Xim is distinct. (This is equivalent to assuming that the joint distribution

generating the distribution is non-atomic.) A statistical test operates on the

data X and generates a test statistic which is compared to a critical value.

Of course, any number of hypotheses may be the subject of such a test. In

this paper, we are interested in generating an ordering of the treatments ac-

cording to their effect on the data (Lehmann 2006). That is, we consider a

test φ(X) which, for each treatment m and l, chooses whether treatment m is

significantly better than treatment l, treatment l is significantly better than

treatment m, or neither treatment is significantly better than the other. We

represent the first conclusion by the notation tm � tl, the second conclusion

by tl � tm, and the last conclusion by tm ∼ tl. To emphasize that these

conclusion depend on the data X, we sometimes write �X for the ordering

relation of the treatments. Naturally, the outcome of the test also could

depend on the number of observations. The statistical literature describes
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a number of such tests and in this section we consider all tests that satisfy

certain desirable properties.

The class of tests that we consider are those that are distribution-free.

This term (as well as the term “nonparametric”) has been used in a number

of different ways in the statistical literature. We use the term “distribution-

free” to refer to statistical tests that have the same distribution of the test

statistic regardless of the underlying distribution. For a precise definition, see

Appendix 2. In particular, the level of a distribution-free test never exceeds

the stated significance level regardless of the underlying distribution.

It can be shown that, in our setting, distribution-free tests are exactly

those tests that are invariant to continuous, positive transformations of the

data and that these tests are exactly those based on rank statistics (Birnbaum

& Rubin 1954, Bell 1960, Bell 1964, Bell & Smith 1972). Intuitively, in-

variance to continuous, positive transformation of the data is equivalent

to “distribution-freeness” because any two continuous distributions can by

linked by such a transformation that preserves the property that one distri-

bution is stochastically larger than the other, and this invariance is equiv-

alent to rank statistic tests because the set of ranks is a maximal invariant

(Lehmann 1986, 315).

We now specify the properties that any reasonable distribution-free test

should possess. The first property that is natural to consider is that the test

not depend on how the units of observation are numbered. We state this

symmetry property in terms of invariance to permutation.

Symmetry For every data matrix X, the test is invariant to any permuta-

tion of the rows of X.

The second property that we require is that the comparisons between

treatments not be inconsistent. That is, if the test indicates that treatment

tm is significantly better than treatment tl and treatment tl is significantly

better than treatment tr, then the test should yield that treatment tm is
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significantly better than treatment tr. Formally, we require that the test

generate a strict partial order of the treatments.

Ordering of Treatments For every data matrix X, the ordering relation

of the treatments, �X is a strict partial order. That is, � is

1. irreflexive, so that for all m, tm � tm,

2. asymmetric, so that tm � tl implies tl � tm, and

3. transitive, so that tm � tl and tl � tr implies tm � tr.

It is important to emphasize that the ordering relation of the treatments

is only a partial order. Specifically, the transitivity condition only applies to

significantly different treatments; it is certainly possible that the test cannot

determine a significant difference between either treatments tm and tl or

treatments tl and tr, but it can determine a significant difference between tm

and tr.

The next property rules out uninteresting or pathological tests by requir-

ing that the test have power.

Nonzero Power For each pair of treatments tm and tl, there exists an in-

teger N such that for all data sizes n ≥ N , if at least n − 1 units of

observation have Xim > Xil, then the test yields tm � tl.

This property says that for sufficiently large data sets, if all or all but

one of the units of observation are better under treatment tm than under

treatment tl, the test should choose treatment tm over tl. In particular, this

property rules out the trivial test which never rejects the null of equality.

The final property is that results of the test should not change if we

remove one or more treatments from consideration. Let M = {1, . . . , k}
be the set of treatments and for any non-empty R ⊂ M , let X(R) be the

data set consisting of the data for the treatments in the set R. That is,

X(R) = {Xim}i=1,...,n
m∈R

.
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Independence of Treatments For every data matrix X and every non-

empty R ⊂M with m, l ∈ R, tm �X tl implies tm �X(R) tl.

This property is essentially an independence condition that requires the

outcome of the test be independent of other, unrelated, treatments. In other

words, the comparison of treatments tm and tl should not depend on the

presence or absence of some third treatment in the analysis.

4 Results

Having established several reasonable properties for statistical test, we now

address the question of whether there is a test that possesses all of these

desirable properties. The answer to this question is our main result.

Theorem 1 There is no symmetric, distribution-free test with nonzero power

that orders treatments and that satisfies independence of treatments.

Proof : Suppose for a proof by contradiction that there exists a symmetric,

distribution-free test with nonzero power that orders treatments and that

satisfies independence of treatments. As the test satisfies the Nonzero Power

property, fix the data size n to be such that for every pair of treatments m

and l, if at least n − 1 units of observation have Xim > Xil, then the test

yields tm � tl. We use a version of Arrow’s Theorem known as the Positional

Dictatorship Theorem (Gevers 1979, Roberts 1980) to reach a contradiction.

The details of this theorem are presented in Appendix 3.

We begin by defining a binary relation R on X by letting XimRXjl if

and only if Xim ≥ Xjl. This relation is clearly an ordering and it is a

linear order because of our assumption that all data points are distinct.

This ordering is invariant to any increasing transformation of the data, so

it is a sufficient summary of the data for a distribution-free test. Likewise,

we use the outcome of our test to define a binary relation on the set of
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treatments. Formally, we let mP ∗l if and only if tm �X tl. By the Ordering

of Treatments property, this relation is a partial order. Therefore, the test

defines a generalized quasi-transitive social preference function (hereafter,

GQTSPF), as described in Appendix 3.

Next, we verify that each of the conditions described in Appendix 3 are

satisfied. First, the Symmetry property of the test immediately implies that

the corresponding GQTSPF satisfies Anonymity. Second, from our choice

of n the Nonzero Power property of the test insures that P ∗ satisfies the

Pareto condition. Third, the Independence of Treatments property of the

test implies that P ∗ satisfies Independence of Irrelevant Alternatives (IIA).

Therefore, by the version of the Positional Dictatorship Theorem given

in Appendix 3, the test must correspond to a positional oligarchy, as defined

in Appendix 3. We conclude the proof by showing no such test can satisfy

the Nonzero Power condition. Let d be position in the positional oligarchy.

As a positional oligarchy is always non-empty, such a position exists. Define

the values of X for treatment tm by Xim = 2i for i 6= d and Xdk = 2d − 1

and for treatment tl by Xil = 2i− 1 for i 6= d and Xdl = 2d . All but one ob-

servation have Xim > Xil so by the Nonzero Power condition, we must have

tm � tl. But since d is a position in the positional oligarchy, this implies

that (d,m)R(d, l) which is equivalent to Xdm ≥ Xdl. This last statement

contradicts the definition of Xdm and Xdl, which establishes that there is no

test that satisfies all of the conditions of the theorem. �

This result is important because it establishes that there is no possible

test that always orders choices in a consistent way. It is worth emphasizing

that this theorem applies to both one-way and two-way layouts and to tests

that rank treatments by observation as well as tests that use overall rankings.

This theorem means that any given test must violate at least one of these

properties. Indeed, it is easy to give examples of tests that satisfy four of the

five properties. In a one-way layout, Dunn’s (1964) procedure satisfies all

10



of the properties except for Independence of Treatments, while the Dwass-

Steel-Critchlow-Fligner procedure (Hollander & Wolfe 1999, 240) satisfies all

of the properties except for Ordering of Treatments. In a two-way layout,

the Nemenyi-McDonald-Thompson procedure (Hollander & Wolfe 1999, 295)

satisfies all of the properties except for Independence of Treatments, while

Steel’s (1959b) satisfies all of the properties except for Ordering of Treat-

ments.

Certainly, this result raises several related questions. One obvious ques-

tion is that if there is no test that satisfies the two desirable properties of

ordering treatments and independence of treatments, can we pick a test that

will satisfy one of these properties and also in some sense do well on the

other? The answer to this question is positive.

First, suppose that we restrict ourselves to tests that always order choices.

In fact, we restrict ourselves further to “positional methods” that assign

point values to each rank and sum up the points. The Friedman multiple

comparison procedure is one example. As proved by Saari (1990) and applied

to statistical tests by Haunsperger (1992), among positional voting rules, the

Borda rule is the one that has the fewest violations of the Independence of

Treatments property. In our context, this fact implies the following result.

Theorem 2 Among positional method tests (which are all symmetric, distribution-

free tests with nonzero power that order treatments), the Friedman statistic

multiple comparison test has the fewest violations of independence of treat-

ments.

Alternatively, we can consider statistical tests which always satisfy inde-

pendence of treatments and look for a test that has the fewest violations of

ordering of treatments. As proved by Maskin (1995) and Campbell & Kelly

(2000), among voting rules, the majority rule is the one that is transitive on

the largest domain of preference orders. In our context, this fact implies the

following result.

11



Theorem 3 Among all symmetric, distribution-free tests with nonzero power

that satisfy independence of treatments, the k-sample sign statistic multiple

comparison test has the fewest violations of ordering of treatments.

Thus, although no test satisfies all of the desirable properties that we

have identified, the multiple comparison tests based on the Friedman rank

statistic and the k-sample sign statistic offer the best tradeoffs between these

properties.

But what can be said about the comparison between these two tests? Is

one better than the other? The answer to this question is given in the next

theorem.

Theorem 4 Suppose the Friedman rank statistic satisfies independence of

treatments for some data matrix X. Then the k-sample sign statistic satisfies

the ordering of treatments property on X.

Proof : Suppose the Friedman rank statistic satisfies independence of

treatments for some data matrix X and chooses treatment tm over treatment

tl. Because it satisfies independence of treatments on X, the test chooses tm

over tl no matter how many other treatments are included with treatments

tm and tl. In particular, the test chooses tm over tl when these are the only

two treatments included. But the Friedman rank statistic with two treat-

ments is identical to the k-sample sign statistic and therefore the k-sample

sign statistic must choose tm over tl. This same point applies to all of the

pairwise comparisons and therefore it must be the case that the Friedman

rank statistic and the k-sample sign statistic give the same answer for every

pair of treatments. It follows that since the Friedman rank statistic satisfies

the ordering of treatments property, for the data matrix X the k-sample sign

statistic also satisfies this property. �

Thus, whenever the Friedman rank statistic is “well-behaved” in the sense

that it satisfies all of the properties we have described, the k-sample sign
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statistic is also be “well-behaved.” However, the converse of this theorem

is false. That is, it is possible that the k-sample sign statistic satisfies the

ordering of treatments property on a data matrix X, but the Friedman rank

statistic does not satisfy the independence of treatments property for the

data X. As a general matter, then, the k-sample sign statistic is strictly

better than the Friedman rank statistic when minimizing the number of

inconsistencies. (This result says nothing about the relative power of the two

procedures.) Put another way, for any data matrix X, either the k-sample

sign statistic will be “well-behaved” and agree with the Friedman test or the

the Friedman rank statistic will violate independence of treatments.

5 Conclusion

We have examined the inconsistencies that can arise in the context of ranked-

based multiple comparisons. We have shown by way of examples that these

inconsistencies can occur. Moving beyond these examples, we have shown

that every possible distribution-free rank-based multiple comparison with

certain reasonable properties is susceptible to these phenomena. In doing

so, we generalized a number of existing results in the literature. Finally, we

argue that the best possible tests are the multiple comparison test based on

the Friedman rank statistic and the k-sample sign statistic, in that these

tests minimize the potential for paradoxical results.
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Appendix 1: Rank-Based MCPs and Papers

Table 7: This categorization is based on Miller (1981), Hochberg & Tamhane
(1987), and Hollander & Wolfe (1999).

One-Way Layout
Paired Joint

General k-sample ranks Kruskal-Wallis ranks

Configuration Steel (1959a), Nemenyi (1963),

Dwass (1960), Dunn (1964),

Steel (1960), McDonald & Thompson (1967)

Steel (1961),

Fligner (1884),

Critchlow & Fligner (1991)

Control v. Steel (1959b) Nemenyi (1963),

Treatment Dunn (1964),

Damico & Wolfe (1987)

Ordered k-sample ranks

Treatments Hayter & Stone (1991)

Two-Way Layout
Paired Joint

General k-sample ranks Friedman ranks

Configuration Nemenyi (1963), Nemenyi (1963),

McDonald & Thompson (1967) McDonald & Thompson (1967),

Odeh (1977),

Skillings & Mack (1981)

Control v. k-sample sign Nemenyi (1963),

Treatment Steel (1959b), Wilcoxon & Wilcox (1964),

Nemenyi (1963), Miller (1981)

Rhyne & Steel (1965)
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Appendix 2: Distribution-free and Invariant

Tests

We begin with the definitions of distribution-free and invariance that we

use. Both definitions involve the use of a group G of transformations of the

sample space. That is, each transformation g ∈ G maps the sample space

onto itself. Let S be the class of strictly increasing continuous distributions

on R. Formally, the group G is said to be an invariant class of transformations

if

1. G is a group, so that

(a) if g1, g2 ∈ G, then the product transformation g1 ◦ g2 ∈ G, and

(b) if g ∈ G, then the inverse transformation g−1inG, and

2. for all g ∈ G, if F ∈ S, then Fg(x) = F [g−1(x)] ∈ S.

In the k-treatment case we consider here, the appropriate group of invariant

transformations is the group of strictly increasing continuous transformations

of R onto itself.

The definition of a distribution-free statistic is stated in relation to a class

of distributions and a group of transformations.

Definition 1 A statistic T is strongly distribution-free with respect to the

class of distribution S and a group of transformations G if for all real t, all

F ∈ S, and all g ∈ G

PF [T (x) ≤ t] = PG[T (x) ≤ t],

where G(x) = Fg(x) = F [g−1(x)].

A statistic is invariant to a transformation if its value does not change under

the transformation. It is almost invariant if its value almost never changes.
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Definition 2 A statistic T is invariant with respect to a group of transfor-

mations G if for all g ∈ G
T (x) = T (gx).

A statistic T is almost invariant with respect to the class of distribution S

and a group of transformations G if all F ∈ S and for all g ∈ G

PF [T (x) 6= T (gx)] = 0.

As we only consider non-sequential tests, it is known that the classes of

strongly distribution-free, almost invariant, and rank statistic tests coincide.

Theorem 5 (Theorem 5.2, Bell & Smith (1972)) If T is non-sequential,

then the following are equivalent:

1. T is strongly distribution-free,

2. T is almost invariant,

3. T is equivalent to a rank statistic.

Note that any test satisfying the Symmetry Property must be non-sequential.
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Appendix 3: The Positional Dictatorship The-

orem

We begin with some definitions. Consider a binary relation R on a finite

set Z. The relation R is complete if xRy or yRx for all x, y ∈ Z, x 6= y,

reflexive if xRx for all x ∈ Z, and transitive if xRy and yRz imply xRz for

all x, y, z ∈ Z. The relation R is called an ordering if it is complete, reflexive,

and transitive, and a linear order if it is an ordering such that xRy and yRx

imply x = y for all x, y ∈ Z. Next, for a given binary relation R, let P denote

its asymmetric part. That is, xPy if and only if xRy and not yRx. We say

R is quasi-transitive if P is transitive and R is a quasi-transitive order if it

is complete, reflexive, and quasi-transitive. Note that R is a quasi-transitive

order if and only if P is irreflexive, asymmetric, and transitive.

Suppose there is a set N of individuals and a set K of alternatives, with

|K| ≥ 3. In the standard version of Arrow’s Theorem, each individual has a

linear order over the set of alternatives and we are interested in aggregating

these |N | incomparable orderings into a social ordering over the alternatives.

Our problem, however, permits interpersonal comparisons of ranks and only

requires quasi-transitive social orderings, so we must adjust the aggregation

problem accordingly. Let R be a linear order on the set N × K and let R
be the set of all such orderings. Then a generalized quasi-transitive social

preference function (GQTSPF) is a function that assigns a quasi-transitive

order R∗ on Z to each R ∈ R. We denote such a GQTSPF by f .

We now define the conditions we will impose on a GQTSPF.

Pareto For k, l ∈ K, if (i, k)P (i, l) for all i ∈ N , then kP ∗l.

Independence of Irrelevant Alternatives (IIA) If R,R′ ∈ R are two

orderings such that for x, y ∈ Z, (i, x)R(j, y) iff (i, x)R′(j, y) and

(j, y)R(i, x) iff (j, y)R′(i, x) for all i, j ∈ N , then xf(R)y iff xf(R′)y

and yf(R)x iff yf(R′)x.
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Anonymity If R,R′ ∈ R are two orderings such that for all x, y ∈ Z and

all i, j ∈ N , (i, x)R(j, y) iff (π(i), x)R′(π(j), y) for some permutation π

on N , then f(R) = f(R′).

Finally, we must define a particular type of quasi-transitive social ordering

R∗ on Z. For an ordering R ∈ R and x ∈ Z, let Rx be the ordering on K

defined by iRxj iff (i, x)R(j, x). Using this ordering, let i(d,Rx) be the

individual that is ranked dth from the bottom. We say R∗ = f(R) is a

positional oligarchy if there exists some non-empty subset M ⊆ K such that

for all R ∈ R and for all x, y ∈ Z, xP ∗y implies (i(d,Rx), x)R(i(d,Ry), y) for

all d ∈M and (i(d,Rx), x)P (i(d,Ry), y) for all d ∈M implies xP ∗y.

These definitions allow us to state the version of the Positional Dictator-

ship Theorem due to (Roberts 1980) that we make use of.

Theorem: If a GQTSPF satisfies IIA, Pareto, and Anonymity, then it is a

positional oligarchy.
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