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In an important paper, Timothy J. Feddersen and Wolfgang Pesendor-

fer (1996) investigate the “swing voter’s curse.” In a model of elections in

which voters have common preferences and private information, they show

that, when indifferent, less informed voters are better off abstaining than vot-

ing for either alternative, even without a cost of voting—the “swing voter’s

curse.” They go on to show that even though significant abstention occurs

in large electorates, the outcome of the election is almost always the same as

with perfect information.

Unfortunately, the proof of the proposition that establishes the “swing

voter’s curse” phenomenon contains an error. In this comment we identify

the error and give a correct proof of the proposition.

I. The Model and Notation

In this section, we sketch the model presented in Feddersen and Pesendorfer

(1996) and introduce the appropriate notation. We will follow the notation in

Feddersen and Pesendorfer (1996) closely. Interested readers should consult

the original paper for more details.

There are N +1 potential voters who must, by plurality rule, collectively

make a binary choice from the set {0, 1}. We assume N is even, and write

N = 2m. There are two states of the world, also denoted {0, 1}, and all

potential voters share a common prior α that the true state of the world

is 0. Each voter is randomly assigned a type by Nature as follows. With
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probability p0, the voter prefers that 0 is chosen, regardless of the state of

the world. Likewise, with probability p1, she prefers 1. With probability

probability pi, the voter prefers to select the alternative that matches the

true state of the world and with probability q she learns the true state of the

world and with probability 1 − q she does not. Finally, with the remaining

probability pφ = 1− p0 − p1 − pi, the voter prefers to abstain.

Each of these types have a dominant strategy, except for the uninformed

independents [selected with probability (1−q)pi]. Given a symmetric strategy

τ for these voters and the dominant strategies of the others, let σz,x(τ) be

the probability that a randomly selected voter votes for alternative x in state

z. Then

σz,x(τ) =





px + pi(1− q)τx if z 6= x

px + pi(1− q)τx + piq if z = x.

From these probabilities can be generated the probability that the other N

voters have cast votes that create a tie, πt(z, τ), and the probability that al-

ternative x receives exactly one less vote than alternative y, denoted πx(z, τ).1

In what follows, we use the following notation:

Lj =
(2m)!

j!j!(2m− 2j)!
σφ(τ)2m−2j,

Mj =
(2m)!

(j + 1)!j!(2m− 2j − 1)!
σφ(τ)2m−2j−1,

1These expressions are given by equations (4) and (5) in Feddersen and Pesendorfer
(1996)
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Φ =
m∑

j=0

Lj [σ1,0(τ)σ1,1(τ)]j ,

Ψ =
m∑

j=0

Lj [σ0,0(τ)σ0,1(τ)]j

φ =
m−1∑
j=0

Mj [σ1,0(τ)σ1,1(τ)]j ,

ψ =
m−1∑
j=0

Mj [σ0,0(τ)σ0,1(τ)]j .

II. Results

In this section we identify the error in Proposition 1 of Feddersen and Pe-

sendorfer (1996) and present a correct proof. We first state the proposition:

Proposition 1 Let pφ > 0, q > 0, N ≥ 2 and N even. For any symmet-

ric strategy profile τ in which no agent plays a strictly dominated strategy,

E u(1, τ) = E u(0, τ) implies E u(1, τ) < E u(φ, τ).

In other words, if a voter is indifferent between the two alternatives, she

strictly prefers to abstain. This is the “swing voter’s curse.” An implica-

tion of this proposition is that there is no Nash equilibrium in which some

uninformed independent mixes between voting for 0 and voting for 1.

The second-to-last sentence of the published proof of this proposition

states incorrectly that “σ1,1(τ) = piq + σ1,0(τ)” (p. 419). The correct rela-

tionship is that σ1,1(τ) = piq + σ0,1(τ). This error makes the line of proof in
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the paper unsuccessful.2

In order to present a correct proof, it will be useful to have the following

technical lemma:

Lemma 1

(a). If σ1,0(τ) = σ0,1(τ), then Φ = Ψ and φ = ψ.

(b). If m > 1 and σ1,0(τ) < (>) σ0,1(τ), then φ < (>) ψ. If m = 1, then

φ = ψ.

(c). If σ1,0(τ) < (>) σ0,1(τ), then Ψφ > (<) Φψ.

Proof : As σ0,0(τ) = σ1,0(τ) + piq and σ1,1(τ) = σ0,1(τ) + piq,

Φ =
m∑

j=0

Lj [σ1,0(τ)σ0,1(τ) + σ1,0(τ)piq]
j ,

Ψ =
m∑

j=0

Lj [σ1,0(τ)σ0,1(τ) + σ0,1(τ)piq]
j ,

φ =
m−1∑
j=0

Mj [σ1,0(τ)σ0,1(τ) + σ1,0(τ)piq]
j ,

ψ =
m−1∑
j=0

Mj [σ1,0(τ)σ0,1(τ) + σ0,1(τ)piq]
j .

Parts (a) and (b) follow immediately from these expressions. To establish

2The error does not affect the proofs of any of the other results and, in fact, Proposi-
tion 2 (pp. 414–15) implies that for sufficiently large electorates, Proposition 1 holds.
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part (c), note that

Ψφ− Φψ =

(
Lm [σ0,0(τ)σ0,1(τ)]m +

m−1∑
j=0

Lj [σ0,0(τ)σ0,1(τ)]j
)

φ

−
(

Lm [σ1,0(τ)σ1,1(τ)]m +
m−1∑
j=0

Lj [σ1,0(τ)σ1,1(τ)]j
)

ψ

=

(
m−1∑
j=0

Lj [σ0,0(τ)σ0,1(τ)]j
)

φ−
(

m−1∑
j=0

Lj [σ1,0(τ)σ1,1(τ)]j
)

ψ

+ (Lm [σ0,0(τ)σ0,1(τ)]m) φ− (Lm [σ1,0(τ)σ1,1(τ)]m) ψ

=

(
m−1∑
j=0

Lj [σ0,0(τ)σ0,1(τ)]j
)(

m−1∑

k=0

Mk [σ1,0(τ)σ1,1(τ)]k
)

−
(

m−1∑
j=0

Lj [σ1,0(τ)σ1,1(τ)]j
)(

m−1∑

k=0

Mk [σ0,0(τ)σ0,1(τ)]k
)

+ (Lm [σ0,0(τ)σ0,1(τ)]m) φ− (Lm [σ1,0(τ)σ1,1(τ)]m) ψ

=

(
m−1∑
j=0

m−1∑

k=0

LjMk [σ0,0(τ)σ0,1(τ)]j [σ1,0(τ)σ1,1(τ)]k

−
m−1∑
j=0

m−1∑

k=0

LjMk [σ1,0(τ)σ1,1(τ)]j [σ0,0(τ)σ0,1(τ)]k
)

+ (Lm [σ0,0(τ)σ0,1(τ)]m) φ− (Lm [σ1,0(τ)σ1,1(τ)]m) ψ.

We consider the terms in the large parentheses first:

m−1∑
j=0

m−1∑

k=0

LjMk [σ0,0(τ)σ0,1(τ)]j [σ1,0(τ)σ1,1(τ)]k

−
m−1∑
j=0

m−1∑

k=0

LjMk [σ1,0(τ)σ1,1(τ)]j [σ0,0(τ)σ0,1(τ)]k
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=
m−1∑
j=0

m−1∑

k=0

LjMk

[
[σ0,0(τ)σ0,1(τ)]j [σ1,0(τ)σ1,1(τ)]k − [σ1,0(τ)σ1,1(τ)]j [σ0,0(τ)σ0,1(τ)]k

]
.

As the terms with j = k equal zero,

=
m−1∑
j=0

m−1∑

k=0

j 6=k

LjMk

[
[σ0,0(τ)σ0,1(τ)]j [σ1,0(τ)σ1,1(τ)]k − [σ1,0(τ)σ1,1(τ)]j [σ0,0(τ)σ0,1(τ)]k

]

=
m−1∑
j=0

m−1∑

k=0

j>k

LjMk

[
[σ0,0(τ)σ0,1(τ)]j [σ1,0(τ)σ1,1(τ)]k − [σ1,0(τ)σ1,1(τ)]j [σ0,0(τ)σ0,1(τ)]k

]

+
m−1∑
j=0

m−1∑

k=0

j<k

LjMk

[
[σ0,0(τ)σ0,1(τ)]j [σ1,0(τ)σ1,1(τ)]k − [σ1,0(τ)σ1,1(τ)]j [σ0,0(τ)σ0,1(τ)]k

]

=
m−1∑
j=0

m−1∑

k=0

j>k

(LjMk − LkMj)
[
[σ0,0(τ)σ0,1(τ)]j [σ1,0(τ)σ1,1(τ)]k

− [σ1,0(τ)σ1,1(τ)]j [σ0,0(τ)σ0,1(τ)]k
]

=
m−1∑
j=0

m−1∑

k=0

j>k

(2m)!(2m)!σφ(τ)4m−2k−2j−1

(j + 1)!j!(2m− 2j)!(k + 1)!k!(2m− 2k)!
[(j + 1)(2m− 2k)− (k + 1)(2m− 2j)]

×
[
[σ0,0(τ)σ0,1(τ)]j [σ1,0(τ)σ1,1(τ)]k − [σ1,0(τ)σ1,1(τ)]j [σ0,0(τ)σ0,1(τ)]k

]

=
m−1∑
j=0

m−1∑

k=0

j>k

(2m)!(2m)!σφ(τ)4m−2k−2j−1

(j + 1)!j!(2m− 2j)!(k + 1)!k!(2m− 2k)!
(2m + 2)(j − k)

× [σ0,0(τ)σ0,1(τ)]j [σ1,0(τ)σ1,1(τ)]k
[
1− [σ1,0(τ)σ1,1(τ)]j−k [σ0,0(τ)σ0,1(τ)]k−j

]

=
m−1∑
j=0

m−1∑

k=0

j>k

(2m)!(2m)!σφ(τ)4m−2k−2j−1

(j + 1)!j!(2m− 2j)!(k + 1)!k!(2m− 2k)!
(2m + 2)(j − k)
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× [σ0,0(τ)σ0,1(τ)]j [σ1,0(τ)σ1,1(τ)]k
[
1− [σ1,0(τ)σ0,1(τ) + σ1,0(τ)piq]

j−k

[σ1,0(τ)σ0,1(τ) + σ0,1(τ)piq]
j−k

]
.

The last term in brackets is always positive if σ1,0(τ) < σ0,1(τ) and always

negative if σ1,0(τ) > σ0,1(τ), and all of the other terms are positive. Thus,

the sum is positive if σ1,0(τ) < σ0,1(τ) and negative if σ1,0(τ) > σ0,1(τ).

Returning to the sign of the last two terms of the expression for Ψφ−Φψ,

(Lm [σ0,0(τ)σ0,1(τ)]m) φ− (Lm [σ1,0(τ)σ1,1(τ)]m) ψ

= Lm

[
[σ0,0(τ)σ0,1(τ)]m

m−1∑
j=0

Mj [σ1,0(τ)σ1,1(τ)]j − [σ1,0(τ)σ1,1(τ)]m
m−1∑
j=0

Mj [σ0,0(τ)σ0,1(τ)]j
]

= Lm

m−1∑
j=0

Mj

[
[σ0,0(τ)σ0,1(τ)]m [σ1,0(τ)σ1,1(τ)]j − [σ1,0(τ)σ1,1(τ)]m [σ0,0(τ)σ0,1(τ)]j

]

= Lm

m−1∑
j=0

Mj [σ0,0(τ)σ0,1(τ)]m [σ1,0(τ)σ1,1(τ)]j
[
1− [σ1,0(τ)σ1,1(τ)]m−j [σ0,0(τ)σ0,1(τ)]j−m

]

= Lm

m−1∑
j=0

Mj [σ0,0(τ)σ0,1(τ)]m [σ1,0(τ)σ1,1(τ)]j
[
1− [σ1,0(τ)σ0,1(τ) + σ1,0(τ)piq]

m−j

[σ1,0(τ)σ0,1(τ) + σ0,1(τ)piq]
m−j

]
.

Once again, the last term in brackets is always positive if σ1,0(τ) < σ0,1(τ)

and always negative if σ1,0(τ) > σ0,1(τ), and all of the other terms are

positive. Thus, the sum is positive if σ1,0(τ) < σ0,1(τ) and negative if

σ1,0(τ) > σ0,1(τ). This establishes part (c) of the lemma.

We are now ready to prove the proposition.

Proof of Proposition 1 : From equation (8) in Feddersen and Pesendorfer (1996),
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E u(1, τ)− E u(0, τ) = (1− α)

[
πt (1, τ) +

1

2
(π1 (1, τ) + π0 (1, τ))

]

− α

[
πt (0, τ) +

1

2
(π1 (0, τ) + π0 (0, τ))

]
,

and from equations (4) and (5) in Feddersen and Pesendorfer (1996),

E u(1, τ)− E u(0, τ) =

(1− α)

[
Φ +

1

2
(σ1,0(τ) + σ1,1(τ))φ

]
− α

[
Ψ +

1

2
(σ0,0(τ) + σ0,1(τ))ψ

]
.

Using the fact that σ1,0(τ) + σ1,1(τ) = σ0,0(τ) + σ0,1(τ),

E u(1, τ)− E u(0, τ) = Φ +
1

2
[σ1,0(τ) + σ1,1(τ)] φ

− α

[
Φ + Ψ +

1

2
[σ0,0(τ) + σ0,1(τ)] (φ + ψ)

]
.

Therefore, E u(1, τ)− E u(0, τ) = 0 implies that

α =
Φ + 1

2
[σ1,0(τ) + σ1,1(τ)] φ

Φ + Ψ + 1
2
[σ0,0(τ) + σ0,1(τ)] (φ + ψ)

. (1)

From equation (6) in Feddersen and Pesendorfer (1996),

E u(1, τ)− E u(φ, τ) =
1

2
[(1− α) [πt (1, τ) + π1 (1, τ)]− α [πt(0, τ) + π1(0, τ)]]

=
1

2
[πt (1, τ) + π1 (1, τ)− α [πt (1, τ) + πt(0, τ) + π1 (1, τ) + π1(0, τ)]]

=
1

2
[Φ + σ1,0(τ)φ− α [Φ + Ψ + σ1,0(τ)φ + σ0,0(τ)ψ]]
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=
1

2

[
Φ + σ1,0(τ)φ− α

[
Φ + Ψ +

1

2
(σ0,0(τ) + σ0,1(τ))(φ + ψ)

]

+α

[
1

2
(σ0,0(τ) + σ0,1(τ))(φ + ψ)− (σ1,0(τ)φ + σ0,0(τ)ψ)

]]
.

Using equation (1) and the fact that σ0,0(τ) = σ1,0(τ) + piq,

=
1

2

[
Φ + σ1,0(τ)φ−

[
Φ +

1

2
(σ1,0(τ) + σ1,1(τ))φ

]

+α

[
1

2
(σ1,0(τ) + piq + σ0,1(τ))(φ + ψ)− (σ1,0(τ)φ + σ1,0(τ)ψ + piqψ)

]]

=
1

4
[σ1,0(τ)φ− σ1,1(τ)φ + α [(piq + σ0,1(τ)− σ1,0(τ))(φ + ψ)− 2piqψ]] .

Finally, using the fact that σ1,1(τ) = σ0,1(τ) + piq,

=
1

4
[(σ1,0(τ)− σ0,1(τ)− piq)φ + α [(σ0,1(τ)− σ1,0(τ))(φ + ψ) + piq(φ− ψ)]]

=
1

4
[(σ1,0(τ)− σ0,1(τ))(φ− α(φ + ψ))− piq(φ− α(φ− ψ))]

=
1

4
[(σ1,0(τ)− σ0,1(τ))(φ− α(φ + ψ))− piq((1− α)φ + αψ)] . (2)

If σ1,0(τ) = σ0,1(τ), then this equation and Lemma 1 (a) implies E u(1, τ)−
E u(φ, τ) = 1

4
(−piq)φ < 0. If σ1,0(τ) 6= σ0,1(τ), then this equation implies

E u(1, τ) − E u(φ, τ) < 0 if (σ1,0(τ) − σ0,1(τ))(φ − α(φ + ψ)) < 0. From

equation 1,

φ− α(φ + ψ) = φ− Φ + 1
2
[σ1,0(τ) + σ1,1(τ)] φ

Φ + Ψ + 1
2
[σ0,0(τ) + σ0,1(τ)] (φ + ψ)

(φ + ψ).
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As σ1,0(τ) + σ1,1(τ) = σ0,0(τ) + σ0,1(τ), we obtain equation (3), below.

=
φ

[
Φ + Ψ + 1

2
[σ0,0(τ) + σ0,1(τ)] (φ + ψ)

]− (φ + ψ)
[
Φ + 1

2
[σ0,0(τ) + σ0,1(τ)] φ

]

Φ + Ψ + 1
2
[σ0,0(τ) + σ0,1(τ)] (φ + ψ)

=
[Φ + Ψ] φ− Φ [φ + ψ]

Φ + Ψ + 1
2
[σ0,0(τ) + σ0,1(τ)] (φ + ψ)

=
Ψφ− Φψ

Φ + Ψ + 1
2
[σ0,0(τ) + σ0,1(τ)] (φ + ψ)

. (3)

The denominator of this expression is positive, and thus by Lemma 1 (c),

(σ1,0(τ)− σ0,1(τ))(φ− α(φ + ψ)) is negative. Thus, in each case, E u(1, τ)−
E u(φ, τ) < 0 and the proposition is established.
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