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1 Introduction

A rent-seeking contest is a situation in which players expend costly effort

to gain a reward. Many conflict situations can be described by rent-seeking

contests, including political campaigns, patent races, war fighting, lobbying

efforts, labor market competition, legal battles, and professional sports. The

reward in a rent-seeking contest may be indivisible, such as electoral office

or a patent right, or it may be divisible, such as market share or vote share.

In the former case, expending more effort increases the probability that a

player will win the prize. In the latter case, expending more effort increases

the share of the prize.

An important vehicle for investigating the logic of rent-seeking contests is

the model of Tullock (1980). This work has spawned a large literature, some

of which is surveyed in Lockard and Tullock (2001) and Corchón (2007). In

this paper, we contribute to this literature by developing a model of rent-

seeking contests in which players have incomplete information about the cost

of effort to other players. That is, players are uncertain about the value of

others for expending effort.1

We consider rent-seeking contests with two players that each have private

information about their own cost of effort. We model such a contest as

Bayesian game in which each player’s cost is drawn from a distribution of

possible costs. We consider both discrete and continuous distributions of

costs and give results for each case. We focus on existence of equilibria,

which, in the continuous case, requires the use of a functional analysis fixed

point argument.

The focus on rent-seeking contests with two-sided incomplete informa-

tion and continuous cost distributions is what sets this paper apart from

other papers that consider asymmetric information in contests. For exam-

1It is important to distinguish this informational type of uncertainty from the uncer-
tainty due to risk aversion that has been examined in the literature (Hillman and Katz,
1984; Van Long and Vousden, 1987).
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ple, Harstad (1995) looks at a model with asymmetrically informed agents,

but in the context of a winner-take-all game. Hurley and Shogren (1998b)

and Schoonbeek and Winkel (2006) both consider models with one-sided in-

complete information, while Hurley and Shogren (1998a) and Malueg and

Yates (2004) present models with two-sided incomplete information in which

both players’ valuations are either high or low. Additionally, recent work

on existence of equilibria in rent-seeking contests includes Cornes and Hart-

ley (2005) and Malueg and Yates (2006), but these papers assume complete

information. Bernardo et al. (2000) embed a rent-seeking contest with one-

sided incomplete information in a moral hazard model of litigation. Finally,

Wärneryd (2003) gives a Bayesian model of rent-seeking contests in which

there is asymmetric information about the common value of the prize. Al-

though we deal with the private value case of individual cost of effort, some

of the techniques of analysis are similar.

The paper is organized in the following fashion. The next section contains

the definitions and notation of the model, as well as a summary of the results

for the complete information setting. In section 3, we examine a simple

example of incomplete information in which each player has only two possible

costs of effort. We explicitly solve for the equilibrium and provide some

comparative statics. In section 4, we consider the continuous case, with

a uniform distribution of possible costs. The main result is an existence

proof. We also graphically present a numerical estimate of the equilibrium

and provide some comparative statics and properties for this case. Finally,

section 5 concludes.

2 Notation and Definitions

We model a rent-seeking contest as a game between two players who must

choose a level of costly effort to obtain a share of a prize. Each player chooses

a level of effort ei ≥ 0 for i = 1, 2. The effort level of both players is denoted
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e = (e1, e2). The effort levels chosen by the players determine a portion

fi(e) ∈ [0, 1] for player i. We interpret a “portion” in one of two ways —

either as a fraction of a divisible good or as the probability of receiving a

nondivisible good. By the expected utility theorem, these interpretations are

mathematically equivalent if both players are risk neutral.2 We assume that

the benefit a player receives is linear in the player’s portion and the cost a

player pays is linear in effort. That is, there are constants αi, βi, γi, and δi

with βi > 0 and δi > 0, such that player i’s expected utility is

ui(e) = αi + βifi(e) − (γi + δei).

Without loss of generality, we can take αi − γi = 0. Likewise, we can divide

by βi, which gives

ui(e) = fi(e) −
δi

βi

ei.

To operationalize the analysis, we specify the following functional form for

fi(e):

fi(e) =







ei/
∑

j ej if
∑

j ej > 0

1/2 otherwise.

This functional form is common in the literature (Tullock, 1980; Nitzan, 1991;

Szidarovsky and Okuguchi, 1997) and is a simple form of the contest suc-

cess functions axiomatized by Skaperdas (1996) and Clark and Riis (1998).3

Letting ci = δi/βi, the expected utility for player i is

ui(e) =
ei

∑

j ej

− eici,

unless ei = 0, in which case ui(e) = 0. By defining ci in this way, we include

the case in which the individuals’ valuations of the prize (the βi term) differ

2This is not true if the player are risk averse (Hillman and Katz, 1984; Van Long and
Vousden, 1987).

3In fact, our results do not depend on the value of fi(e) at e = (0, 0).
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(Hillman and Riley, 1989).

If both players have complete information about all aspects of the game,

the equilibrium of this game is easily found (and well known). If the players

have the same cost of effort, c, then the first order condition for player i is

e−i

(
∑

j ej)2
= c. (1)

As this must hold for both players, it clear that, in equilibrium, e1 = e2.
4

Substituting this back into equation (1) gives the solution e1 = e2 = 1/(4c)

in equilibrium. As both players would be strictly better off by choosing

e1 = e2 = 0, this equilibrium solution is inefficent, again, a standard result.

Building on this complete information setup, in this paper we model a

contest as a game of incomplete information in which players are uncertain

about the other’s cost of effort.5 In the sections that follow, we consider both

the discrete and continuous cases. We introduce some general notation here

and give precise details in the later sections.

We suppose that each player’s cost is drawn independently from a distri-

bution G(c) before the game is played. G(c) may be discrete or continuous

and we denote the support of G by C ⊆ R+. Each player’s own cost is private

information and thus G represents the players’ common prior of the type of

the other, where we identify the type of a player with their cost. A (pure)

strategy for player i is a function σi : C → R+. In other words, a player i

with cost ci chooses an effort level ei = σi(ci).

The equilibrium concept we use for this simultaneous Bayesian game

is Bayesian-Nash equilibrium. Specifically, a strategy profile (σ∗

1, σ
∗

2) is a

Bayesian-Nash equilibrium if, for every c1 ∈ C,

∫

C

u1(σ
∗

1(c1), σ
∗

2(c)) dG(c) ≥

∫

C

u1(σ
′

1(c1), σ
∗

2(c)) dG(c)

4It is easy to check that ei > 0 holds for both players in equilibrium.
5See Gradstein (1995) for a model with variable effort effectiveness instead of variable

costs.
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for every σ′

1, and similarly for player 2. We restrict our attention to symmetric

equilibria. These are equilibria in which players of the same type take the

same action. In our setting, a symmetric Bayesian-Nash equilibrium satisfies

σ∗

1 = σ∗

2 = σ∗.

3 Results: Discrete Case

In this section, we analyze the simplest possible formulation of this game

of incomplete information; namely, the discrete case with only two types

for each player. This simple formulation of uncertainty has been previously

examined by Hurley and Shogren (1998a) and Malueg and Yates (2004).

In particular, we assume that C = {cL, cH}, with cH > cL > 0, and that

each player i (independently) draws cost ci = cL with probability 1/2 and

draws cost ci = cH with probability 1/2. Thus, a (symmetric) strategy is a

function σ : C → R+. As the domain of this function has only two elements,

it is sufficient to consider two values, eL and eH , defined by eL = σ(cL) and

eH = σ(cH).

The first order condition is given by

(
1

2
)

eH

(ei + eH)2
+ (

1

2
)

eL

(ei + eL)2
= ci. (2)

When ci = cL, ei = eL must satisfy this condition. This gives

eH

(eL + eH)2
+

1

4eL

= 2cL. (3)

Likewise, when ci = cH , ei = eH must satisfy the first order condition,6 so

1

4eH

+
eL

(eL + eH)2
= 2cH . (4)

6It is easy to show that eL and eH must both be positive.
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Manipulating equations 3 and 4 gives

4eLeH + (eL + eH)2 = 2cL(4eL)(eL + eH)2 (5)

and

(eL + eH)2 + 4eHeL = 2cH(4eH)(eL + eH)2. (6)

From equations (5) and (6), it is clear that cLeL = cHeH must hold. Equiv-

alently, we must have
eH

eL

=
cL

cH

. (7)

In other words, the ratio of the equilibrium effort levels must be the inverse

of the ratio of the costs.7 Plugging eH = eL(cL/cH) into equation (5) yields

eL =
4 cL

cH

+ (1 + cL

cH

)2

8cL(1 + cL

cH

)2
, (8)

and thus by equation (7),

eH =
4 cL

cH

+ (1 + cL

cH

)2

8cH(1 + cL

cH

)2
. (9)

To summarize, in this simple discrete case, a unique (symmetric) equilibrium

exists.

We now turn to analyzing the comparative statics of this case. It is

straightforward but tedious to show that ∂eL/∂cL < 0. Thus, holding the

high cost constant, increasing the low cost decreases the effort level of a low

type. Perhaps a more interesting comparative static is the case in which both

costs change in such a way that cL

cH

is held constant. Then it is immediate

from equations (8) and (9) that the effort levels of both types of player change

by an inverse amount. Thus, when both costs are doubled, for example, the

effort levels of both types of player decrease by half.

7See Malueg and Yates (2004) for a similar result.
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Finally, consider what happens to the equilibrium as cL converges to cH .

From equation (7), it is clear that eL goes to eH as cL goes to cH . Moreover,

if cL and cH converge to some value c, then eL and eH must converge to 1/4c,

which is the solution to the complete information version of the model.

4 Results: Continuous Case

In this section we prove existence and numerically analyze the equilibrium

for the case of a continuous distribution of costs. By considering the case in

which each player has a continuum of possible types, we allow for a much

richer and more general specification of uncertainty than previous models

which consider only two possible types of each player, such as Hurley and

Shogren (1998a) and Malueg and Yates (2004).

For simplicity, we suppose that each player’s cost ci is drawn indepen-

dently from a uniform distribution on an interval of length one, that is

G(c) ∼ U [c, c + 1], with c > 0 and C = [c, c + 1]. With this assump-

tion, the expected utility for player i with cost ci, when the opponent plays

strategy σ, is given by

ui(ei, σ; ci) = − eici +

∫

C

ei

ei + σ(t)
dt. (10)

Because player i can guarantee a payoff of at least zero by setting ei = 0,

the optimal choice of ei must satisfy ui(ei, σ; ci) ≥ 0 for all ci ∈ C. As the

integral in equation (10) is bounded by 1, this implies that the optimal choice

of ei must satisfy 0 ≤ ei ≤ 1/ci. On the interval C = [c, c + 1], then, an

optimal choice of ei must satisfy 0 ≤ ei ≤ 1/c. We denote this upper bound

by E = 1/c.

A player with cost ci faces an optimization problem of maximizing equa-

tion (10) subject to ei ≥ 0. The Kuhn-Tucker conditions for a given value of
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ci are the following:

− ci +

∫

C

σ(t)

(ei + σ(t))2
dt = 0 for ei > 0, and (11)

− ci +

∫

C

σ(t)

(ei + σ(t))2
dt ≤ 0 for ei = 0. (12)

Examining the integral in equation (11), it is clear that it is strictly decreasing

in ei and goes to zero as ei gets large. Thus, it follows that this first order

condition is satisfied by exactly one value of ei. A best response for player i

to σ, which we denote bσ(c) or b(c), is precisely the value of ei that satisfies

the first order condition with cost c. Thus, the best response function bσ(c)

is well-defined, nonnegative, and decreasing in c.8 In addition, it is an easy

consequence of the implicit function theorem that the best response function

is continuous.

We now present the main result of this section—that a equilibrium exists

in our model.

Theorem 1 If G(ci) ∼ U [c, c+1], with c > 0, for i = 1, 2, then a symmetric

pure strategy Bayesian-Nash equilibrium exists.

The proof of this theorem is contained in the appendix. As is standard,

the method of proof of existence is to find a fixed point of the best response

mapping. However, this mapping is defined on a subset of a space of functions

which, like most such sets, is not compact (under the standard sup norm).

Therefore we use an alternative approach. We have already established that

the best response functions are monotone and continuous. In the appendix,

we show that the set of best response functions is equicontinuous and that

the operator that maps the opponent’s strategy into a best response function

is continuous. This allows us to establish existence using Schauder’s Fixed

Point Theorem. This approach is more flexible than a contraction mapping

8In fact, it is clear that b(c) is strictly decreasing for values of c with b(c) > 0.
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Figure 1. Numerical solution and comparison to complete information

argument (which only requires completeness), but it does not insure unique-

ness of the fixed point. We conjecture that the equilibrium to the model is,

in fact, unique, but leave a proof for future work.

Theorem 1 shows that an equilibrium exists. To find a closed-form so-

lution for it, we must solve the integral equation given in equation (11) for

all c ∈ C. One approach to accomplish this is by working with the inverse

of the solution, which transforms the integral equation from nonlinear into

linear form, but such an approach appears to be intractable in this case.

On the other hand, it is possible to numerically calculate a solution by a

standard iterative method. For the case of c = .01, the numerical solution is

shown in Figure 1. In the figure, the horizontal axis is the cost value drawn

by a player and the vertical axis is the equilibrium effort expended. The

numerical solution is given by the solid line in the figure. This solution was

calculated numerically over a grid of 100 elements and thus the figure is a

good approximation of the true equilibrium strategy.

Figure 1 also illustrates how the equilibrium effort level under incomplete

information compares to the effort level of the complete information symmet-

ric game from section 2. Under complete information, the equilibrium effort

level is ei = 1/(4c), which is indicated by the dashed line in Figure 1. It is

interesting to observe that the two functions are qualitatively similar, but
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the incomplete information strategy always calls for slightly less effort than

the complete information version.9 This result echoes an earlier finding by

Hurley and Shogren (1998a) that, in a model in which each player could have

either a high or low valuation of the prize, asymmetric information makes ef-

fort more risky, which tends to decrease effort levels. Figure 1 illustrates that

this effect carries over to a model in which both players have a continuum of

possible types.

Finally, inspection of Figure 1 shows that both players always exert posi-

tive effort in equilibrium. In fact, this is true for any symmetric equilibrium

of this game. To see this, suppose that there is a symmetric equilibrium

in which a non-zero interval of costs gives zero effort. Let the probability

that such a cost is realized be p0 > 0. If this occurs, the other player can

gain the prize with certainty by exerting an arbitrarily small amount of ef-

fort. In particular, a level of effort that satisfies 0 < ei < p0/ci yields a

gain in expected utility. With this choice of effort at cost ci, a player does

strictly better than with ei = 0. Thus, there can be no interval of costs for

which zero effort is optimal in a symmetric equilibrium. Moreover, a similar

argument shows that this result continues to hold in any symmetric equilib-

rium of a game with n > 2 players.10 This conclusion differs from work on

entry in complete information rent-seeking contests in which some players

choose not to participate by choosing zero effort (Gradstein, 1995; Higgins

et al., 1985).11 However, such situations under complete information can

occur only in “asymmetric” contests in which players have different valua-

tions. Our finding that players always exert positive effort under incomplete

information applies to symmetric equilibria of a symmetric model (i.e., all

players have an identical cost distribution). Thus, even though players can

9Of course, the dashed line is not a strategy in the same way that the solid line is, but
rather describes equilibrium effort as the cost of effort in the complete information game
is varied.

10The only modification required in the above argument is that the level of effort must
satisfy 0 < ei < pn−1

0
/ci in a game with n players.

11But see Wärneryd (2006) for a similar result in a model with asymmetric information.
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have different realized costs in our model, they are identical ex ante. These

differences in the symmetry of the models suggest that caution is warranted

in making comparisons between them.

5 Conclusion

In this paper, we have examined rent-seeking contests under various forms of

incomplete information. The analysis of these models has been complex in

places, but we have gained some insight into the role that information plays

in this class of games. Our main result is a proof of existence of equilibrium

when costs are drawn from a continuous distribution.

Much work remains to be done in this vein, particulary for the continu-

ous case. First, the model can be made more general by allowing for more

general distributions of costs and more than two players. Fortunately, it ap-

pears that in both cases, the line of proof given in the appendix should go

through with only minor modifications. However, numerical calculation of

the result would be more difficult. A second line of work involves generaliz-

ing the contest success function fi(e). It is likely this will be a more difficult

task to accomplish. Another aspect of the problem that remains open is

an examination of efficiency in the continuous case. Direct comparison with

the complete information equilibrium demonstrates that inefficiency is still

prevalent, but more work in this area remains to be done. Finally, we have

restricted our attention to symmetric equilibria in this paper. Future work

that considers asymmetric equilibria in this model and/or asymmetric models

of rent-seeking contests may be illuminating and ultimately more realistic.
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6 Appendix: Proof of Existence

Theorem If G(ci) ∼ U [c, c + 1], with c > 0, for i = 1, 2, then a symmetric

Bayesian-Nash equilibrium exists.

Proof : Let C[a, b] be the space of all real continuous functions on the interval

[a, b]. Equipped with the sup norm, ‖f(x)‖ = supx∈[a,b]| f(x) |, this space is

a Banach space. We are interested in the set of nonnegative continuous

functions on the interval C = [c, c+1] bounded by E = 1/c. Formally, define

CE[c, c + 1] = {f ∈ C[c, c + 1] | ‖f‖ ≤ E and f(x) ≥ 0, x ∈ [c, c + 1]}. (13)

Clearly, this is a closed, convex subset of C[c, c + 1].12

For a given function σ ∈ CE, let the best response function bσ(c) be as

defined above. As bσ(c) is bounded by E and is continuous, bσ(c) ∈ CE.

Therefore we can define T : CE → CE to be the mapping σ 7→ bσ. As the

best response function is unique, this mapping is a function. An equilibrium

is a fixed point of this function, σ∗ = Tσ∗.

Because CE is not compact with the sup norm, we rely on a fixed point

theorem for compact operators. An operator S : X → Y , X and Y Banach

spaces, is compact if it is continuous and maps bounded sets into relatively

compact sets.13 We can now state the Schauder Fixed Point Theorem, a

useful discussion of which is found in Zeidler (1986).

Theorem (Schauder) Let X be a nonempty, closed, bounded, convex sub-

set of a Banach space and suppose S : X → X is a compact operator. Then

S has a fixed point.

In order to establish that T is a compact operator, the characterization of

relative compactness in the space of continuous functions given by the Arzelà-

12For simplicity, in what follows we exclude from this set the constant zero function.
Excluding this element would mean this set is not closed. This issue can be resolved by
considering a sequence of subsets of CE requiring ‖f‖ ≥ ε, with ε → 0.

13A set is relatively compact if its closure is compact.
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Ascoli Theorem is very useful. This theorem uses the following two defini-

tions. A set of (real-valued) functions F is equicontinuous on the interval C if

for every ε > 0 there is a δ > 0 such that |x−y | < δ implies | f(x)−f(y) | < ε

for all f ∈ F and all x, y ∈ C. A set of (real-valued) functions F is uniformly

bounded on the interval C if there is a value M < ∞ such that | f(x) | ≤ M

for all f ∈ F and all x ∈ C.

Theorem (Arzelà-Ascoli) A set of functions in C[a, b], with the sup norm,

is relatively compact if and only if it is uniformly bounded and equicontinuous

on [a, b].

Clearly CE is uniformly bounded, so to establish our result we must show

that T is continuous and has equicontinuous range.

We first show that the range of T is a set of equicontinuous functions.

From the first order condition, we have

c1 − c2 =

∫

C

σ(t)

(b(c1) + σ(t))2
dt −

∫

C

σ(t)

(b(c2) + σ(t))2
dt

=

∫

C

σ(t)

(b(c1) + σ(t))2
−

σ(t)

(b(c2) + σ(t))2
dt

=

∫

C

σ(t)
(b(c2) + σ(t))2 − (b(c1) + σ(t))2

(b(c1) + σ(t))2(b(c2) + σ(t))2
dt

=

∫

C

σ(t)
b2(c2) − b2(c1) + 2σ(t)(b(c2) − b(c1))

(b(c1) + σ(t))2(b(c2) + σ(t))2
dt

=
[

b(c2) − b(c1)
]

∫

C

σ(t)
b(c2) + b(c1) + 2σ(t)

(b(c1) + σ(t))2(b(c2) + σ(t))2
dt

=
[

b(c2) − b(c1)
]

∫

C

σ(t)
b(c1) + σ(t) + b(c2) + σ(t)

(b(c1) + σ(t))2(b(c2) + σ(t))2
dt

=
[

b(c2) − b(c1)
]

[
∫

C

σ(t)

(b(c1) + σ(t))(b(c2) + σ(t))2

+
σ(t)

(b(c1) + σ(t))2(b(c2) + σ(t))
dt

]

.

The two integrals on this last line are both positive. Using the first order
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condition and the fact that b(c) and σ(t) are both bounded by E, we have

∫

C

σ(t)

(b(c1) + σ(t))(b(c2) + σ(t))2
dt ≥

∫

C

σ(t)

2E(b(c2) + σ(t))2
dt =

c2

2E
(14)

A similar argument shows that the second integral in the expression above

is bounded below by c1/2E. Taking absolute values, we have

| c1 − c2 | ≥ | b(c2) − b(c1) |
( c2

2E
+

c1

2E

)

> | b(c2) − b(c1) |
( c

E

)

(15)

Now, fix ε > 0 and let δ = ε(c/E). Then | c1 − c2 | < δ implies | b(c2) −

b(c1) |(c/E) < ε(c/E) or | b(c2) − b(c1) | < ε. As this holds for all best

response functions and all c1, c2 ∈ C, this establishes equicontinuity.

We now show that the operator T is continuous. In other words, if σn → σ

and bσn
= Tσn and bσ = Tσ, then bσn

→ bσ. Convergence in a function space

with the sup norm is equivalent to uniform convergence, so we must show

bσn
converges uniformly to bσ. So take a sequence σn → σ and a point c ∈ C.

The first order condition yields

∫

C

σn(t)

(bσn
(c) + σn(t))2

dt = c =

∫

C

σ(t)

(bσ(c) + σ(t))2
dt. (16)

And thus

∫

C

σn(t)

(bσn
(c) + σn(t))2

−
σ(t)

(bσ(c) + σ(t))2
dt = 0

∫

C

σn(t)(b2
σ(c) + 2bσ(c)σ(t) + σ2(t)) − σ(t)(b2

σn
(c) + 2bσn

(c)σn(t) + σ2
n(t))

(bσn
(c) + σn(t))2(bσ(c) + σ(t))2

dt = 0

∫

C

σn(t)b2
σ(c) − σ(t)b2

σn
(c) + 2σ(t)σn(t)(bσ(c) − bσn

(c)) + σ(t)σn(t)(σ(t) − σn(t))

(bσn
(c) + σn(t))2(bσ(c) + σ(t))2

dt = 0.

We can rewrite the first two terms in the numerator as

σn(t)b2
σ(c) − σ(t)b2

σn
(c) = σn(t)b2

σ(c) − σ(t)b2
σ(c) + σ(t)b2

σ(c) − σ(t)b2
σn

(c)
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= b2
σ(c)(σn(t) − σ(t)) + σ(t)(b2

σ(c) − b2
σn

(c))

= b2
σ(c)(σn(t) − σ(t)) + σ(t)(bσ(c) + bσn

(c))(bσ(c) − bσn
(c)).

This gives

∫

C

σ(t)(bσ(c) + bσn
(c))(bσ(c) − bσn

(c)) + 2σ(t)σn(t)(bσ(c) − bσn
(c))

(bσn
(c) + σn(t))2(bσ(c) + σ(t))2

dt

+

∫

C

b2
σ(c)(σn(t) − σ(t)) + σ(t)σn(t)(σ(t) − σn(t))

(bσn
(c) + σn(t))2(bσ(c) + σ(t))2

dt = 0.

Setting D = (bσn
(c) + σn(t))2(bσ(c) + σ(t))2, we have

(bσ(c) − bσn
(c))

∫

C

σ(t)(bσ(c) + bσn
(c)) + 2σ(t)σn(t)

D
dt

= b2
σ(c)

∫

C

σ(t) − σn(t)

D
dt +

∫

C

σ(t)σn(t)(σn(t) − σ(t))

D
dt.

Taking the absolute value of both sides and noting that the integral on the

left side of the equation is positive, we have

| bσ(c) − bσn
(c) |

∫

C

σ(t)(bσ(c) + bσn
(c)) + 2σ(t)σn(t)

D
dt

=

∣

∣

∣

∣

b2
σ(c)

∫

C

σ(t) − σn(t)

D
dt +

∫

C

σ(t)σn(t)(σn(t) − σ(t))

D
dt

∣

∣

∣

∣

,

and so

| bσ(c) − bσn
(c) |

∫

C

σ(t)(bσ(c) + bσn
(c)) + 2σ(t)σn(t)

D
dt

≤ b2
σ(c)

∣

∣

∣

∣

∫

C

σ(t) − σn(t)

D
dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

C

σ(t)σn(t)(σn(t) − σ(t))

D
dt

∣

∣

∣

∣

≤ b2
σ(c)

∫

C

|σ(t) − σn(t) |

D
dt +

∫

C

σ(t)σn(t)|σ(t) − σn(t) |

D
dt.

Now, for a given ε, choose n large enough that |σ(t) − σn(t) | < ε. This
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means

| bσ(c) − bσn
(c) |

[
∫

C

σ(t)(bσ(c) + bσn
(c))

D
dt + 2

∫

C

σ(t)σn(t)

D
dt

]

≤ E2ε

∫

C

1

D
dt + ε

∫

C

σ(t)σn(t)

D
dt.

Dividing both sides by
∫

C

σ(t)σn(t)
D

dt yields

| bσ(c) − bσn
(c) |

[

2 +

∫

C

σ(t)(bσ(c)+bσn (c))
D

dt
∫

C

σ(t)σn(t)
D

dt

]

≤ ε

[

1 +
E2

∫

C
1
D

dt
∫

C

σ(t)σn(t)
D

dt

]

| bσ(c) − bσn
(c) | ≤

ε

2

[

1 +
E2

∫

C
1
D

dt
∫

C

σ(t)σn(t)
D

dt

]

The final step is to establish bounds for D. It is clear that (σn(t)σ(t))2 ≤

D ≤ (E + σn(t))2(E + σ(t))2. Using these bounds, we arrive at

| bσ(c) − bσn
(c) | ≤

ε

2

[

1 +
E2

∫

C
1

(E+σn(t))2(E+σ(t))2
dt

∫

C

σ(t)σn(t)
(σn(t)σ(t))2

dt

]

≤
ε

2

[

1 +
E2

∫

C
1

(E+σn(t))2(E+σ(t))2
dt

∫

C
1

σn(t)σ(t)
dt

]

.

The right hand side of this inequality does not depend on c. This demon-

strates that bσn
converges uniformly to bσ. We conclude that the mapping T

is continuous. All of the conditions of the Schauder Fixed Point Theorem are

satisfied, so T has a fixed point. This proves existence of an equilibrium.
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