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Abstract

In this paper, we give an example of a statement concerning two-player zero-sum
games which is undecidable, meaning that it can neither be proven or disproven by the
standard axioms of mathematics. Earlier work has shown that there exist “paradoxical”
two-player zero-sum games with unbounded payoffs, in which a standard calculation of
the two players’ expected utilities of a mixed strategy profile yield a positive sum. We
show that whether or not a modified version of this paradoxical situation, with bounded
payoffs and a weaker measurability requirement, exists is an unanswerable question. Our
proof relies on a mixture of techniques from set theory and ergodic theory.
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1 Introduction

One strength of game theory lies in its mathematical foundation, which provides a rigorous
framework for analyzing complex strategic interactions between rational decision-makers.
This mathematical foundation has several advantages. It provides a high level of rigor, ensuring
that conclusions drawn from the theory are logically sound. It provides clarity, so arguments
are easier to understand and evaluate. It allows for independent verification, as others can
check the correctness of mathematical arguments. Finally, it can suggest new insights into
problems by opening up new avenues of research and inquiry.
However, there are limits to what can be achieved by a mathematical theory. Gödel’s

celebrated Incompleteness Theorem shows that there exist mathematical statements which
can neither be proved nor disproved. A concrete example of such a statement is the Continuum
Hypothesis, which states that every infinite set of real numbers is either countable or has the
same cardinality as the real line. Famously, the work of Gödel (1940) and Cohen (1963, 1964)
shows that the Continuum Hypothesis can neither be proved true or false using the standard
axioms of mathematics. In other words, the Continuum Hypothesis is undecidable.
In this paper, we give a statement regarding two-player zero-sum games that is undecidable,

in the same manner as the Continuum Hypothesis. The specific statement we consider relates
to calculating the expected utility of mixed strategies in two-player zero-sum games. In order to
understand the importance of this statement, consider the standard approach to calculate the
expected utility of a profile of mixed strategies (𝜎1, 𝜎2). The first step is often to calculate the
expected utility of each of a player’s pure strategies, given the mixed strategy of the opponent,
which is given by 𝑈𝑖 (𝑠𝑖 | 𝜎𝑗 ) =

∫
𝑢𝑖 (𝑠𝑖, 𝑠 𝑗 ) 𝑑𝜎𝑗 (𝑠 𝑗 ). Then, using these expected utilities, the

expected utility of the profile of mixed strategies (𝜎1, 𝜎2) is calculated as
∫
𝑈𝑖 (𝑠𝑖 | 𝜎𝑗 ) 𝑑𝜎𝑖 (𝑠𝑖).

Alternatively, the functions 𝑈𝑖 (𝑠𝑖 | 𝜎𝑗 ) may be used directly in identifying an equilibrium.
This is done by checking that each player is indifferent across all of the pure strategies in the
support of her own mixed strategy and weakly prefers these pure strategies to those outside
the support.
However, as noted by Baye, Kovenock and De Vries (2012), this standard approach can lead

to paradoxical results when applied to games with unbounded payoff functions. The authors
provide an example of an auction game with unbounded action sets and correspondingly
unbounded payoffs in which both players can receive net positive equilibrium payoffs even
though only pure transfers are available in the game. More specifically, they show that there
exists a measurable zero-sum utility function 𝑢1 = −𝑢2 and a mixed strategy profile (𝜎1, 𝜎2)
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such that 𝑈𝑖 (𝑠𝑖 | 𝜎𝑗 ) exists and is finite for every 𝑠𝑖 ∈ 𝑆𝑖, but∫
𝑈1(𝑠1 | 𝜎2) 𝑑𝜎1(𝑠1) +

∫
𝑈2(𝑠2 | 𝜎1) 𝑑𝜎2(𝑠2) > 0.

In other words, the sum of the expected payoffs to the two players in a zero-sum game can be
positive-sum! In Baye, Kovenock and De Vries (2012), this is dubbed the “Herodotus paradox,”
as the example comes from the historian Herodotus’ account of Babylonian bridal auctions.
As discussed in Baye, Kovenock and De Vries (2012), this apparent paradox occurs because an
unbounded utility function can fail to be integrable with respect to the joint measure 𝜎1 ⊗ 𝜎2.
In such a case, the standard approach described above is incorrect. The authors also mention
that this paradox cannot occur if the player’s strategy sets are compact and the zero-sum
utility function is measurable and bounded.
Essentially, the statement we consider asks if the Herodotus paradox can occur in a zero-

sum game with compact strategy sets and a bounded utility function, but with a weaker
measurability requirement. More specifically, we ask, in the context of two-player zero-sum
games on the unit square, is there a bounded utility function 𝑢1 = −𝑢2 and a mixed strategy
profile (𝜎1, 𝜎2) such that 𝑢𝑖 is measurable in 𝑠𝑖, holding fixed 𝑠 𝑗 ,𝑈𝑖 (𝑠𝑖 | 𝜎𝑗 ) is measurable, and∫

𝑈1(𝑠1 | 𝜎2) 𝑑𝜎1(𝑠1) +
∫

𝑈2(𝑠2 | 𝜎1) 𝑑𝜎2(𝑠2) ≠ 0.

The precise statement is given in Section 3 as Statement 𝐴.
Our main result is that this statement is undecidable, so that it can neither be proven

nor disproven by the standard axioms of mathematics. That is, whether or not there exists a
certain kind of paradoxical two-player zero-sum game on the unit square is an unanswerable
question. It may seem challenging to prove that something is unprovable, but our approach
is fairly straightforward. In particular, we find two undecidable statements, the first of
which implies that Statement 𝐴 is true and the second of which implies that Statement 𝐴 is
false. Specifically, by using a construction that dates back to Sierpiński (1920), we first show
that if the Continuum Hypothesis holds, then Statement 𝐴 is true. Then we show that if a
specific undecidable statement about two cardinal characteristics of the continuum holds,
then statement 𝐴 is false. Putting these two implications together implies that statement 𝐴 is
undecidable.
To our knowledge, statement 𝐴 is the first undecidable statement relating to strategic
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form games.1 As in Baye, Kovenock and De Vries (2012), the ultimate source of our results is
whether or not we can apply Fubini’s Theorem for calculating the expected utility of mixed
strategies with respect to the product measure of the mixtures. Thus our work is closely
related to results in pure mathematics on undecidable versions of Fubini’s Theorem (Friedman,
1980; Freiling, 1986; Shipman, 1990; Recław and Zakrzewski, 1999). We extend this work by
showing how it intersects with statements about zero-sum games and by offering a different
method of proof using ergodic theory.
We should also mention that other connections between games and axiomatic set theory

exist in the mathematical literature. One specific example is Prikry and Sudderth (2016).
This paper also deals with two-player zero-sum games. Specifically, the authors show that
whether or not the upper value function of a parameterized utility function is universally
measurable is undecidable. More broadly, there is a rich literature on topological games (Berge,
1957). These are sequential games in which two players alternate making choices from some
mathematical set. These choices are formed into a sequence, with the winner determined
by whether or not the sequence has some property. There are many varieties of topological
games (Kechris, 1995). While most interesting topological games are determined, meaning
a winning strategy for one player always exists, it is possible using the Axiom of Choice to
construct topological games that are undetermined. As an alternative to the Axiom of Choice,
the Axiom of Determinacy states that every set of reals is determined. Variations of the axiom
are useful in showing what mathematical results can be proven using only limited versions of
the Axiom of Choice. Litak (2018) examines some interesting applications of these axioms to
social choice theory and inter-generational utility aggregation.

2 Mathematical Preliminaries

2.1 Sets and Cardinality

We begin with some basic facts from set theory.2 Consider a nonempty set 𝑋. The binary
relation < on 𝑋 is a linear order if it is irreflexive, antisymmetric, and transitive.3 If < is a
linear order on 𝑋, we say 𝑋 is ordered by <. We write 𝑥 ≤ 𝑦 if 𝑥 < 𝑦 or 𝑥 = 𝑦. For a subset

1A different use of the term “undecidable” refers to computational questions. See, for example, Rabin (1957),
Rubinstein (1998, Ch. 10), and Velupillai (2009).
2For more details, see Jech (2003) or Ciesielski (1997).
3A binary relation 𝑅 on 𝑋 is irreflexive if 𝑥𝑅𝑥 holds for no 𝑥 ∈ 𝑋, antisymmetric if for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦,

either 𝑥𝑅𝑦 or 𝑦𝑅𝑥 holds, and transitive if for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑥𝑅𝑦 and 𝑦𝑅𝑧 imply 𝑥𝑅𝑧.
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𝐴 ⊆ 𝑋 ordered by <, an element 𝑎 is the smallest element of 𝐴 if 𝑎 ∈ 𝐴 and 𝑎 ≤ 𝑥 for all 𝑥 ∈ 𝐴.
A linear order < on 𝑋 is a well-ordering if every nonempty subset of 𝑋 has a smallest element.
If < is a well-ordering on 𝑋, we say 𝑋 is well-ordered by <. An example of a well-ordered
set is the set of natural numbers ℕ with the standard ordering. It is well known (Jech, 2003,
Theorem 5.1) that the Axiom of Choice is equivalent to the statement that every set can be
well-ordered. Finally, if 𝑋 is a well-ordered set and 𝛼 ∈ 𝑋, let 𝐼𝛼 = {𝑥 ∈ 𝑋 : 𝑥 < 𝛼}. Such a set
is called an initial segment of the well-ordering <. For example, for 𝑛 ∈ ℕ (with the standard
ordering), we have 𝐼𝑛 = {1, 2, . . . , 𝑛 − 1}.
Two sets 𝑋 and 𝑌 have the same cardinality if there is a bijection between 𝑋 and 𝑌 . We

write this as | 𝑋 | = |𝑌 |. The cardinality of 𝑋 is less than or equal to 𝑌 if there is a one-to-one
function 𝑓 : 𝑋 → 𝑌 . We write this as | 𝑋 | ≤ |𝑌 |. Finally, the cardinality of 𝑋 is strictly less
than 𝑌 if | 𝑋 | ≤ |𝑌 | but not | 𝑋 | = |𝑌 |. It is well-known (Jech, 2003, Theorem 3.2) that for
every pair of sets 𝑋 and 𝑌 we have | 𝑋 | ≤ |𝑌 | or |𝑌 | ≤ | 𝑋 |, and moreover, | 𝑋 | ≤ |𝑌 | and
|𝑌 | ≤ | 𝑋 | implies | 𝑋 | = |𝑌 |.
A set 𝑋 is finite if | 𝑋 | < |ℕ | and it is countable if | 𝑋 | ≤ |ℕ |. The cardinality of ℕ is

denoted by ℵ0, so that |ℕ | = ℵ0. If a set 𝑋 is not countable, then it is uncountable. For example,
it is well known (Jech, 2003, Theorem 4.1) that the set of rational numbers is countable, while
the set of real numbers, ℝ, is uncountable. The cardinality of ℝ is denoted 𝔠 and so ℵ0 < 𝔠.
It is easy to check that the relation of having the same cardinality is an equivalence relation,

and therefore to each equivalence class we associate a cardinal. Thus, cardinals are a way
of representing the size of a sets, including infinite sets. Every natural number is a cardinal
and ℵ0 and 𝔠 are other examples of cardinals. Although we do not give a formal definition of
cardinals, we can think of them as generalizations of natural numbers that identify the size of
infinite sets. The cardinality of the natural numbers, ℵ0, is special in that it is the least infinite
cardinal. That is, for every infinite set 𝑋, we have ℵ0 ≤ | 𝑋 |.
Two facts about cardinals will be important to what is to come. First, every cardinal can

be used to generate a strictly larger cardinal. This follows from a classic result of Cantor (Jech,
2003, Theorem 3.1) that for every set 𝑋, | 𝑋 | < | 2𝑋 |, where 2𝑋 denotes the power set of 𝑋.
Second, cardinals are well-ordered by <. Therefore there is a least cardinal strictly larger than
ℵ0. This is the least uncountable cardinal and is denoted ℵ1. Similarly, ℵ2 is the least cardinal
strictly greater than ℵ1, and so on.
A natural question is whether 𝔠, the cardinality of ℝ, is the same as the least uncountable

cardinal, ℵ1. In fact, the statement 𝔠 = ℵ1 is known as the Continuum Hypothesis, abbreviated
CH, and this fundamental question was famously shown to be independent of the standard
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axioms of set theory (including the Axiom of Choice) in the sense that it can be neither proved
or disproved using the standard axioms.
More specifically, we take the standard axioms of set theory as the Zermelo-Fraenkel axiom

system, including the Axiom of Choice, abbreviated as ZFC. If a proof of statement 𝜙 exists
using the axioms of ZFC, we say 𝜙 is provable in ZFC. If ¬𝜙 is not provable in ZFC, we say 𝜙 is
consistent with ZFC. If neither 𝜙 or ¬𝜙 is provable in ZFC, then we say that 𝜙 is undecidable in
ZFC (or independent of ZFC). As originally shown by Gödel (1940) and Cohen (1963, 1964),
we have the following proposition:

Proposition 1 (Gödel-Cohen). The statement CH is undecidable in ZFC.

We will rely on one other undecidable statement that involves the following two cardinal
characteristics of the continuum.⁴ These are the cardinalities of some specific sets of real
numbers whose values are not pinned down by ZFC.
Let Z be the collection of Lebesgue measure zero subsets of ℝ. The uniformity number of

the reals is denoted by uni(Z) and is defined by

uni(Z) = min {| 𝐴 | : 𝐴 ∉ Z} .

That is, uni(Z) is the minimal cardinality of a set that is not measure zero.⁵ As every countable
set of reals is measure zero and ℝ is uncountable, we have ℵ0 < uni(Z) ≤ 𝔠. Another common
notation for the uniformity number is non(Z).
The covering number of the reals is denoted cov(Z) and is defined by

cov(Z) = min
{
|A | : A⊆ Z such that

⋃
𝐴∈A

𝐴 = ℝ

}
.

That is, cov(Z) is the minimal cardinality of a collection of measure zero sets that cover ℝ.⁶
As a countable union of measure zero sets is measure zero and ℝ is the union of singletons,
we have ℵ0 < cov(Z) ≤ 𝔠.
From these observations, it should be clear that the statement uni(Z) = cov(Z) is implied

by the Continuum Hypothesis and therefore by Proposition 1, this statement is consistent with
ZFC. As it turns out, every possible cardinal ordering of uni(Z) and cov(Z) is consistent with
ZFC. That is, the relationships uni(Z) < cov(Z), uni(Z) > cov(Z), and uni(Z) = cov(Z)
⁴For more details, see Bartoszynski and Judah (1995); Jech (2003); Bartoszynski (2009)
⁵As cardinals are well-ordered by <, this minimum is obtained.
⁶Again, this minimum is obtained because cardinals are well-ordered by <.
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are all consistent with ZFC. This fact makes up one small part of Cichoń’s diagram, which
summarizes all of the provable and undecidable relationships between twelve different cardinal
characteristics of the continuum.⁷ A concise summary of Cichoń’s diagram can be found in
Goldstern, Kellner and Shelah (2019), while a lengthier discussion of the methods used to
prove it is contained in Blass (2009).⁸ An exhaustive proof is contained in Bartoszynski and
Judah (1995, Ch. 7).
The specific fact that we isolate from Cichoń’s diagram is the following proposition:

Proposition 2. The statement ℵ1 = uni(Z) < cov(Z) = 𝔠 is undecidable in ZFC.

We will rely on this fact in the proof of Theorem 1.

2.2 Ergodic Theory

Ergodic theory is the study of statistical properties of dynamic systems. A fundamental result
in ergodic theory is Birkhoff’s theorem, which states that for an ergodic transformation, the
long-run time average of the states of the system is the same as the space average of the states.
Here, an ergodic transformation is, roughly speaking, one in which repeated application on a
set of positive measure eventually fills all of the space. A formal definition, as well as more
discussion and proofs of Birkhoff’s theorem can be found in Eisner et al. (2015, Ch. 11) or
Dajani and Kalle (2021, Ch. 3).

Proposition 3 (Birkhoff’s Theorem). Suppose (𝑋, Σ, 𝜇) is a measure space. Then a measure-
preserving transformation 𝑇 : 𝑋 → 𝑋 is ergodic if and only if for every integrable 𝑓 : 𝑋 → ℝ

and for 𝜇-almost every 𝑥 ∈ 𝑋

lim
𝑛→∞

1
𝑛

𝑛−1∑︁
𝑗=0

𝑓 (𝑇 𝑗 (𝑥)) =
∫
𝑋

𝑓 𝑑𝜇.

The specific measure-preserving transformation we apply this theorem to is known as
Irrational Rotation. For an irrational 𝛼 ∈ (0, 1), let 𝑇 : [0, 1) → [0, 1) be defined by
𝑇 (𝑥) = 𝑥 + 𝛼 (mod 1). In other words, 𝑇 (𝑥) = 𝑥 + 𝛼 − ⌊𝑥 + 𝛼⌋, where ⌊𝑥⌋ is the largest integer
not greater than 𝑥. Applying this transformation 𝑗 times gives 𝑇 𝑗 (𝑥) = 𝑥 + 𝑗𝛼 (mod 1).
Another well-known result in ergodic theory is that Irrational Rotation is an ergodic

transformation that preserves Lebesgue measure.⁹ Thus we have the following specialization
⁷This diagram was originally developed in Fremlin (1984) and Bartoszyński, Judah and Shelah (1993).
⁸See Section 11 in Blass (2009) and, in particular, Table 4.
⁹See Dajani and Kalle (2021, Sec. 2.3) or Einsiedler and Ward (2011, Sec. 2.3).
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of Birkhoff’s Theorem:

Corollary 1. Fix an irrational 𝛼 ∈ (0, 1). For every integrable 𝑓 : [0, 1] → ℝ and almost every
𝑥 ∈ [0, 1],

lim
𝑛→∞

1
𝑛

𝑛−1∑︁
𝑗=0

𝑓 (𝑥 + 𝑗𝛼 (mod 1)) =
∫ 1

0
𝑓 (𝑡) 𝑑𝑡.

This result can also be seen as a consequence of the Equidistribution Theorem, which
states that, for an irrational 𝛼 ∈ (0, 1), the sequence

𝛼, 2𝛼, 3𝛼, . . . (mod 1)

is uniformly distributed on [0, 1].

3 Results

In this section, we give a precise formulation of our statement and show that it is undecidable.
For a bounded function 𝑢 : [0, 1] × [0, 1] → ℝ, a bounded two-player zero-sum game on the

unit square given by 𝑢 is a strategic form game with two players, strategy sets 𝑆1 = 𝑆2 = [0, 1]
and utility functions 𝑢1(𝑠1, 𝑠2) = 𝑢(𝑠1, 𝑠2) = −𝑢2(𝑠1, 𝑠2) for all (𝑠1, 𝑠2) ∈ [0, 1] × [0, 1]. Amixed
strategy for player 𝑖 in such a game, denoted 𝜎𝑖, is a Borel probability measure on [0, 1].
Consider players playing a mixed strategy profile (𝜎1, 𝜎2). The expected payoff to player 𝑖

of playing pure strategy 𝑠𝑖 when her opponent plays a mixed strategy 𝜎𝑗 is given by

𝑈𝑖 (𝑠𝑖 | 𝜎𝑗 ) =
∫ 1

0
𝑢𝑖 (𝑠𝑖, 𝑠 𝑗 ) 𝑑𝜎𝑗 (𝑠 𝑗 ),

assuming that this integral exists. From this, we define the expected payoff to a player of the
mixed strategy profile (𝜎1, 𝜎2) by

𝑈1(𝜎1, 𝜎2) =
∫ 1

0
𝑈1(𝑠1 | 𝜎2) 𝑑𝜎1(𝑠1) and 𝑈2(𝜎1, 𝜎2) =

∫ 1

0
𝑈2(𝑠2 | 𝜎1) 𝑑𝜎2(𝑠2)

assuming that both of these integrals exist.
For a function 𝑓 : [0, 1] × [0, 1] → ℝ, we follow convention and define the function

𝑓𝑥 : [0, 1] → ℝ by 𝑓𝑥 (𝑦) = 𝑓 (𝑥, 𝑦) and the function 𝑓𝑦 : [0, 1] → ℝ by 𝑓𝑦 (𝑥) = 𝑓 (𝑥, 𝑦). The
statement about zero-sum games that we are interested in is the following:
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Statement 𝐴: There exists a bounded two-player zero-sum game on the unit square given by
𝑢 and a profile of absolutely continuous mixed strategies 𝜎 = (𝜎1, 𝜎2) such that

1. for almost every 𝑥, 𝑦 ∈ [0, 1], the functions 𝑢𝑥 and 𝑢𝑦 are Lebesgue measurable,

2. for 𝑖 = 1, 2 and 𝑗 ≠ 𝑖, the integral given by 𝑈𝑖 (𝑠𝑖 | 𝜎𝑗 ) exists for almost every
𝑠𝑖 ∈ [0, 1] and 𝑈𝑖 (𝑠𝑖 | 𝜎𝑗 ) is a Lebesgue measurable function of 𝑠𝑖.

3. 𝑈1(𝜎1, 𝜎2) +𝑈2(𝜎1, 𝜎2) ≠ 0.

In other words, this statement asks whether there is a bounded utility function 𝑢 for a
two-player zero-sum game and absolutely continuous mixed strategies such that the utility
function is measurable in each variable, holding the other fixed and the expected utility of
almost every pure strategy exists and is measurable, but the sum of the expected utilities of the
two player is not zero-sum. As noted in the Introduction, from Baye, Kovenock and De Vries
(2012), we know that there exists an unbounded utility function that satisfies parts (1)-(3)
of this statement. On the other hand, a bounded and Lebesgue measurable utility function
that satisfies part (2) must have 𝑈1(𝜎1, 𝜎2) +𝑈2(𝜎1, 𝜎2) = 0. In this way, statement 𝐴 is an
intermediate question about two-player zero-sum games.
As we now show, this intermediate question is unanswerable.1⁰ Our main result is the

following:

Theorem 1. Statement 𝐴 is undecidable in ZFC.

The remainder of this section is devoted to a proof of this result. We begin with a lemma
dealing with a specific well-ordering of [0, 1]. We then give two lemmas that shows that
Statement 𝐴 can be true or false depending on which of two undecidable statements we
assume are true. These lemmas are then combined to prove Theorem 1.11
We begin with an initial lemma. As a consequence of the Axiom of Choice, there exists a

well-ordering of the unit interval [0, 1]. Assuming the Continuum Hypothesis, there exists
a well-ordering of [0, 1] with a remarkable feature, namely that every initial segment of

1⁰The assumption that players use absolutely continuous mixed strategies is made for convenience. A similar
undecidable statement can be given for a broader class of mixed strategies, at the cost of additional complexity
in the proof. Specifically, our arguments could be adapted to allow non-singular mixed strategies that have
mass points. But see Wald (1950) and Parthasarathy (1970) for the value of restrictions on the class of mixed
strategies in two-player zero-sum games.
11Careful inspection of these two lemmas show that Statement 𝐴 remains undecidable if the quantifier “for

almost every 𝑥, 𝑦 ∈ [0, 1]” is replaced with “for every 𝑥, 𝑦 ∈ [0, 1].”
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the well-ordering is countable. While this is a standard result in the theory of ordinals, for
completeness we present an elementary proof here.12

Lemma 1. Suppose that CH holds. Then there exists a well-ordering <′ of [0, 1] such that for
every 𝛼 ∈ [0, 1], the initial segment 𝐼𝛼 is countable.

Proof. Assume CH holds. There exists a well-ordering < of [0, 1]. If, for the well-ordering
<, every set 𝐼𝛼 is countable, then we are done. So suppose there is some 𝛼′ such that 𝐼𝛼′ is
uncountable. Because < is a well-ordering, there exists a smallest such 𝛼′ according to <, call
it 𝛽. The initial segment 𝐼𝛽 is uncountable and it follows from CH that 𝐼𝛽 has the cardinality
of the continuum. Therefore there exists a bijection 𝑔 : [0, 1] → 𝐼𝛽.
We can now construct the desired well-ordering of [0, 1]. To do so, define a relation <′

on [0, 1] by 𝑥 <′ 𝑦 if and only if 𝑔(𝑥) < 𝑔(𝑦). It is easy to check that <′ is a linear order.
To show that it is a well-ordering, let 𝐴 ⊆ [0, 1]. We must show 𝐴 has a minimal element.
Consider the image 𝑔(𝐴) under the well-ordering <. This set has a minimal element, which is
equal to 𝑔(𝑎∗) for some 𝑎∗ ∈ 𝐴. As 𝑔(𝑎∗) is a minimal element of 𝑔(𝐴), 𝑔(𝑎∗) < 𝑔(𝑏) for all
𝑏 ∈ 𝐴 \ {𝑎∗}. This implies that 𝑎∗ <′ 𝑏 for all 𝑏 ∈ 𝐴 \ {𝑎∗}, so 𝑎∗ is a minimal element of 𝐴.
Therefore <′ is a well-ordering of [0, 1].
Finally, for 𝛼 ∈ [0, 1], consider the set 𝐼′𝛼 = {𝑦 ∈ [0, 1] : 𝑦 <′ 𝛼}. By definition, 𝑦 <′ 𝛼 if

and only if 𝑔(𝑦) < 𝑔(𝛼), so the image 𝑔(𝐼′𝛼) = 𝐼𝑔(𝛼). But 𝑔(𝛼) ∈ 𝐼𝛽 and therefore 𝑔(𝛼) < 𝛽.
This means 𝐼𝑔(𝛼) cannot be uncountable, as 𝛽 is minimal. We conclude that 𝐼′𝛼 is countable.
Thus the well-ordering <′ has the desired feature. □

Our second lemma shows that if we assume that the Continuum Hypothesis holds, then it
follows that Statement 𝐴 holds. This lemma relies on a construction due to Sierpiński (1920),
which was further examined by Freiling (1986).

Lemma 2. If 𝐶𝐻 holds, then Statement 𝐴 is true.

Proof. Suppose that 𝐶𝐻 holds, so that 𝔠 = ℵ1. Then by Lemma 1, there is a well-ordering <′

of [0, 1] such that for every 𝛼 ∈ [0, 1], the initial segment 𝐼𝛼 of <′ is countable.
Now, for 𝑖 = 1, 2, let 𝑆𝑖 = [0, 1] and define 𝑢𝑖 by

𝑢𝑖 (𝑠𝑖, 𝑠 𝑗 ) =


0 if 𝑠𝑖 = 𝑠 𝑗

+1 if 𝑠 𝑗 <′ 𝑠𝑖

−1 if 𝑠𝑖 <′ 𝑠 𝑗

12See Stein and Shakarchi (2005, p. 96).
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From this definition, it is clear that 𝑢1(𝑠1, 𝑠2) = −𝑢2(𝑠1, 𝑠2) for all 𝑠1, 𝑠2 ∈ [0, 1], so this is a
bounded zero-sum game on the unit square.
Next, we show that for every pure strategy 𝑠𝑖, the payoff function 𝑢𝑖 (𝑠𝑖, 𝑠 𝑗 ) equals −1 at all

but a countable number of values of 𝑠 𝑗 . For every 𝑠𝑖 ∈ [0, 1] we have

{𝑠 𝑗 ∈ [0, 1] : 𝑢𝑖 (𝑠𝑖, 𝑠 𝑗 ) ≠ −1} = {𝑠 𝑗 ∈ [0, 1] : 𝑠 𝑗 <′ 𝑠𝑖 or 𝑠 𝑗 = 𝑠𝑖} = 𝐼𝑠𝑖 ∪ {𝑠𝑖}.

The set 𝐼𝑠𝑖 is countable and therefore 𝐼𝑠𝑖 ∪ {𝑠𝑖} is countable as well. This proves the claim.
From this it follows that 𝑢𝑥 and 𝑢𝑦 are measurable for every 𝑥, 𝑦 ∈ [0, 1]. This is part (1) of
Statement 𝐴.
Now fix an arbitrary profile (𝜎1, 𝜎2) of absolutely continuous mixed strategies. Part (2) of

Statement 𝐴 holds as, for every 𝑠𝑖 ∈ [0, 1]

𝑈𝑖 (𝑠𝑖 | 𝜎𝑗 ) =
∫ 1

0
𝑢𝑖 (𝑠𝑖, 𝑠 𝑗 ) 𝑑𝜎𝑗 (𝑠 𝑗 ) = −1

because 𝜎𝑗 is absolutely continuous. Given this, it is immediate that

𝑈𝑖 (𝜎𝑖, 𝜎𝑗 ) =
∫ 1

0
𝑈𝑖 (𝑠𝑖 | 𝜎𝑗 ) 𝑑𝜎𝑖 (𝑠𝑖) =

∫ 1

0
(−1) 𝑑𝜎𝑖 (𝑠𝑖) = −1

for 𝑖 = 1, 2. Therefore 𝑈1(𝜎1, 𝜎2) +𝑈2(𝜎1, 𝜎2) = −2, which means Statement 𝐴 is true. □

It is worth noting that the proof of this lemma actually establishes the truth of a stronger
statement than statement 𝐴. Specifically, it shows there exists a bounded two-player zero-sum
game on the unit square given by 𝑢 such that parts (1)-(3) in Statement 𝐴 hold for every
profile of absolutely continuous mixed strategies.
Our next lemma states that if the uniformity number of the reals is less than the covering

number of the reals, then Statement 𝐴 is true. This result is similar to a result in Shipman
(1990), although we use a different method of proof. Specifically, the proof begins by showing
that Statement 𝐴 can be used to construct, using methods of ergodic theory, a function similar
to the utility function in Lemma 2. For almost every 𝑥 ∈ [0, 1], this function equals 𝑈1(𝜎1, 𝜎2)
for almost every 𝑦 ∈ [0, 1], and at the same time, for almost every 𝑦 ∈ [0, 1], this function
equals −𝑈2(𝜎1, 𝜎2) for almost every 𝑥 ∈ [0, 1]. Next, we consider, for each 𝑥, the set of 𝑦 such
that the function equals −𝑈2(𝜎1, 𝜎2). These will be measure zero sets and it turns out that,
roughly speaking, for a collection of 𝑥 values of cardinality uni(Z), these sets will cover [0, 1].
This means that uni(Z) ≥ cov(Z).
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Lemma 3. If ℵ1 = uni(Z) < cov(Z) = 𝔠 holds, then Statement 𝐴 is false.

Proof. For a proof by contradiction, suppose ℵ1 = uni(Z) < cov(Z) = 𝔠 holds but Statement 𝐴
is true. That is, suppose there exists a bounded zero-sum game on the unit square and a
profile 𝜎 = (𝜎1, 𝜎2) of absolutely continuous mixed strategies such that parts (1) and (2) of
Statement 𝐴 hold, but 𝑈1(𝜎1, 𝜎2) +𝑈2(𝜎1, 𝜎2) ≠ 0.
As 𝜎1 and 𝜎2 are absolutely continuous, by the Radon–Nikodym theorem there exist

integrable functions 𝑔1 and 𝑔2 such that 𝜎𝑖 (𝐴) =
∫
𝐴
𝑔𝑖 (𝑡) 𝑑𝑡 for every Borel set 𝐴 ⊆ [0, 1].

Define ℎ : [0, 1] × [0, 1] → ℝ by

ℎ(𝑥, 𝑦) = 𝑢(𝑥, 𝑦)𝑔1(𝑥)𝑔2(𝑦).

In addition, fix an irrational 𝛼 ∈ (0, 1) and define

𝑤(𝑥, 𝑦) =

lim𝑛→∞

1
𝑛

∑𝑛−1
𝑗=0 ℎ𝑦 (𝑥 + 𝑗𝛼 (mod 1)) if this limit exists

0 if not.

and

𝑣(𝑥, 𝑦) =

lim𝑛→∞

1
𝑛

∑𝑛−1
𝑗=0 𝑤𝑥 (𝑦 + 𝑗𝛼 (mod 1)) if this limit exists

0 if not.

By part (1) of Statement 𝐴, the function ℎ𝑦 is integrable for almost all 𝑦 and so by
Corollary 1,

𝑤(𝑥, 𝑦) = lim
𝑛→∞

1
𝑛

𝑛−1∑︁
𝑗=0

ℎ𝑦 (𝑥 + 𝑗𝛼 (mod 1)) =
∫ 1

0
ℎ𝑦 (𝑡) 𝑑𝑡

=

∫ 1

0
𝑢(𝑡, 𝑦)𝑔1(𝑡)𝑔2(𝑦) 𝑑𝑡 = −𝑔2(𝑦)𝑈2(𝑦, 𝜎1)

for almost every 𝑥. By part (2) of Statement 𝐴,𝑈2(𝑦, 𝜎1) is integrable for almost every 𝑦. Then
again by Corollary 1, for almost every 𝑦,

𝑣(𝑥, 𝑦) = lim
𝑛→∞

1
𝑛

𝑛−1∑︁
𝑗=0

−𝑔2(𝑦 + 𝑗𝛼 (mod 1))𝑈2(𝑦 + 𝑗𝛼 (mod 1), 𝜎1) =

−
∫ 1

0
𝑈2(𝑡, 𝜎1)𝑔2(𝑡) 𝑑𝑡 = −𝑈2(𝜎1, 𝜎2).
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To sum up, we have shown that for almost every 𝑦, 𝑣(𝑥, 𝑦) = −𝑈2(𝜎1, 𝜎2) for almost every 𝑥.
From this, define

𝐵2 = {𝑦 ∈ [0, 1] : 𝑣(𝑥, 𝑦) = −𝑈2(𝜎1, 𝜎2) for almost every 𝑥},

which is a set of full measure.
Next, note that by part (1) of Statement 𝐴, for almost every 𝑥, the function ℎ𝑥+ 𝑗𝛼 is

measurable for every 𝑗 . Therefore, for almost every 𝑥, the function 𝑤𝑥 is integrable. This
means that for almost every 𝑥, by Corollary 1,

𝑣(𝑥, 𝑦) = lim
𝑛→∞

1
𝑛

𝑛−1∑︁
𝑗=0

𝑤𝑥 (𝑦 + 𝑗𝛼 (mod 1)) =
∫ 1

0
𝑤𝑥 (𝑡) 𝑑𝑡

for almost every 𝑦. From this we see that for almost every 𝑥,

𝑣(𝑥, 𝑦) =
∫ 1

0
𝑤𝑥 (𝑡) 𝑑𝑡 =

∫ 1

0
lim
𝑛→∞

1
𝑛

𝑛−1∑︁
𝑗=0

ℎ𝑡 (𝑥 + 𝑗𝛼 (mod 1)) 𝑑𝑡

for almost every 𝑦. Applying the Dominated Convergence Theorem, we have, for almost
every 𝑥,

𝑣(𝑥, 𝑦) = lim
𝑛→∞

1
𝑛

𝑛−1∑︁
𝑗=0

∫ 1

0
ℎ𝑡 (𝑥 + 𝑗𝛼 (mod 1)) 𝑑𝑡

= lim
𝑛→∞

1
𝑛

𝑛−1∑︁
𝑗=0

𝑔1(𝑥 + 𝑗𝛼 (mod 1))
∫ 1

0
𝑢(𝑥 + 𝑗𝛼 (mod 1), 𝑡)𝑔2(𝑡) 𝑑𝑡

= lim
𝑛→∞

1
𝑛

𝑛−1∑︁
𝑗=0

𝑔1(𝑥 + 𝑗𝛼 (mod 1))𝑈1(𝑥 + 𝑗𝛼 (mod 1), 𝜎2)

for almost every 𝑦. Applying Corollary 1 one final time, we find that for almost every 𝑥,
𝑣(𝑥, 𝑦) =

∫ 1
0 𝑈1(𝑡, 𝜎2)𝑔1(𝑡) 𝑑𝑡 = 𝑈1(𝜎1, 𝜎2) for almost every 𝑦. From this, define

𝐵1 = {𝑥 ∈ [0, 1] : 𝑣(𝑥, 𝑦) = 𝑈1(𝜎1, 𝜎2) for almost every 𝑦},

which is a set of full measure.
Finally, fix a set 𝑀 ⊆ [0, 1] that is not measure zero with | 𝑀 | = uni(Z) and let 𝑦 ∈ 𝐵2
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be arbitrary. From the definition of 𝐵2, the set 𝐸𝑦 = {𝑥 ∈ [0, 1] : 𝑣(𝑥, 𝑦) = −𝑈2(𝜎1, 𝜎2)} is
full measure. Since 𝑀 ∩ 𝐵1 is not measure zero, there exists a point 𝑥(𝑦) ∈ 𝑀 ∩ 𝐵1 such that
𝑣(𝑥(𝑦), 𝑦) = −𝑈2(𝜎1, 𝜎2). From this, for every 𝑥 ∈ 𝑀 ∩ 𝐵1 we define

𝐺𝑥 = {𝑦 ∈ 𝐵2 : 𝑣(𝑥, 𝑦) = −𝑈2(𝜎1, 𝜎2)}

and it follows that 𝐵2 =
⋃

𝑥∈𝑀∩𝐵1 𝐺𝑥. Moreover, it follows from the definition of 𝐵1 that 𝐺𝑥 is
measure zero for every 𝑥 ∈ 𝑀 ∩ 𝐵1, as 𝑈1(𝜎1, 𝜎2) ≠ −𝑈2(𝜎1, 𝜎2). Now, for every 𝑥 ∈ 𝑀 ∩ 𝐵1,
define 𝐻𝑥 = 𝐺𝑥 ∪ ([0, 1] \ 𝐵2). Clearly, 𝐻𝑥 is the union of two measure zero sets and is thus
measure zero for every 𝑥 ∈ 𝑀 ∩ 𝐵1. Moreover, we have⋃

𝑥∈𝑀∩𝐵1
𝐻𝑥 =

⋃
𝑥∈𝑀∩𝐵1

𝐺𝑥 ∪ ([0, 1] \ 𝐵2) = [0, 1] .

This means that uni(Z) = | 𝑀 | ≥ | 𝑀 ∩ 𝐵1 | ≥ cov(Z) and this contradiction completes the
proof. □

We now have done all the hard work needed to prove Theorem 1. All that remains is to
combine the two previous lemmas and Propositions 1 and 2.

Proof of Theorem 1. We must show that neither statement 𝐴 or its negation is provable in ZFC.
First, suppose that statement 𝐴 is provable in ZFC. Then by the contrapositive of Lemma 3, the
statementℵ1 = uni(Z) < cov(Z) = 𝔠 is provably false in ZFC. But this contradicts Proposition 2.
Second, suppose that statement 𝐴 is provably false in ZFC. Then by the contrapositive of
Lemma 2, the Continuum Hypothesis is provably true in ZFC. But this contradicts Proposition 1.
This proves that statement 𝐴 is undecidable in ZFC. □

4 Conclusion

In this paper, we have shown that a particular statement about two-player zero-sum games is
undecidable. Of course, this leaves open the question of what other game-theoretic statements
are undecidable. In the context of two-player zero-sum games on the unit square, it seems
natural to consider if it could be the case that it is undecidable whether a Minimax Theorem
holds, for instance. More generally, there may be conditions under which the existence of a
Nash equilibrium with certain properties is undecidable. We leave such questions for future
research.
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