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Abstract

We analyze an infinitely repeated version of the Downsian model of elections. The
folk theorem suggests that a wide range of policy paths can be supported by subgame
perfect equilibria when parties and voters are sufficiently patient. We go beyond this
result by imposing several suitable refinements and by giving separate weak conditions
on the patience of voters and the patience of parties under which every policy path
can be supported. On the other hand, we show that only majority undominated policy
paths can be supported in equilibrium for arbitrarily low voter discount factors: if the
core is empty, the generic case in multiple dimensions, voter impatience leads us back
to the problem of non-existence of equilibrium. We extend this result to give conditions
under which core equivalence holds for a non-trivial range of voter and party discount
factors, providing a game-theoretic version of the Median Voter Theorem in a model of
repeated Downsian elections.



1 Introduction

The Median Voter Theorem of Black (1958) establishes that if voters have single-peaked
preferences over a one-dimensional set of alternatives, then the median of the distribution
of voter ideal points is majority-preferred to all other alternatives. In multidimensional
policy spaces, however, such “core points” typically do not exist (Plott, 1967; Rubinstein,
1979; Schofield, 1983; Cox, 1984; Le Breton, 1987; Banks, 1995). The standard game-
theoretic model of two-party spatial competition, examined by Downs (1957), assumes that
parties are office-motivated, that they can commit to campaign platforms, and that voters
eliminate weakly dominated strategies. In this setting, it is easy to show that a choice of
policy by the parties is a Nash equilibrium if and only if both parties locate at a core point.
Thus, the median is the unique equilibrium in the one-dimensional model, but electoral
equilibria typically fail to exist in multiple dimensions. These conclusions rely, however, on
the implicit assumption that the election is one-time only; there are no future contests to
consider.

In this paper, we investigate the consequences of repeating this Downsian game and
allowing parties and voters to anticipate the effects of their actions on future elections in
a fully rational manner. Drawing on the theory of infinitely repeated games, it is a folk
theorem that if players have sufficiently high discount factors, then the set of subgame
perfect equilibrium outcomes of a repeated game can be sizeable (Fudenberg and Maskin,
1986). Motivated by this result, we consider the following questions concerning infinitely
repeated two-party competition. Does the median remain the unique equilibrium outcome
in one dimension? Do equilibria exist in multiple dimensions when the core is empty? How
large does the set of equilibrium outcomes become? How do the equilibrium outcomes
depend on the patience of the parties and voters?

We first show that under modest conditions, not only do electoral equilibria exist in any
number of dimensions, but every possible sequence of policies is supportable by a subgame
perfect equilibrium. We give two sets of conditions under which this stark conclusion of
multiplicity holds. The first requires only that voters place more weight on the future
than the present (discount factors greater than one half) and imposes no restriction on the
parties. The second requires that parties place more weight on the future than the present
and states weaker conditions on voter discount factors. An implication of the second result
is that when the core is nonempty, every policy path can be supported in equilibrium merely
if voter discount factors are positive. The availability of a core point (or policies close to
being in the core) is used in our construction to facilitate the punishment of parties, so that
a nonempty core can actually exacerbate the problem of multiplicity.

These results go beyond the standard folk theorem in several ways. First, they do not
rely on arbitrarily patient players, but rather they describe what outcomes are support-
able for a wide range of discount factors, which we allow to vary across voters and parties
separately. Second, we show that arbitrary paths of policies over time, and not just ex-
pected payoffs, can be supported in equilibrium. Third, we use several suitable refinements
of subgame perfect equilibrium that restrict the kinds of punishments available to parties
and voters. In particular, we exclude equilibria in which voters or parties condition on
how particular voters voted in the past, or even on total vote tallies in previous elections.

1



Furthermore, we suppose each voter acts as though pivotal in every election, essentially
eliminating weakly dominated strategies in every period in the spirit of the one-shot Down-
sian model. Finally, we restrict ourselves to equilibria in which any voter, when indifferent
concerning which party wins, flips a fair coin to decide his/her vote, treating the parties
symmetrically.

With these results in hand, we next investigate the implications for equilibria when
voters are impatient. We show that only policy paths close to being in the core can be
supported in equilibrium as voters’ discount factors go to zero, with the implication that
only paths in the core can be supported for arbitrarily low voter discount factors. If the
core is empty, the generic case in multiple dimensions, then voter impatience leads us back
to equilibrium non-existence. We then extend this result to give a range of discount factors
in which parties must choose core points (the median, in one dimension) in equilibrium, a
phenomenon we refer to as “core equivalence.” In this vein, we prove that when the number
of voters is odd, utilities are quadratic, and voters and parties are relatively impatient, core
equivalence holds.

Repeated elections have also been considered in the literature on electoral accountabil-
ity, which drops the commitment assumption and modifies other details of the Downsian
model, such as adding asymmetric information of one form or another.1 While many of
these models assume a single “representative” voter, Duggan (2000) and Bernhardt, Dubey,
and Hughson (2004) explicitly allow for a continuum of voters, and the former paper con-
tains simulation results suggesting core equivalence as voters become arbitrarily patient.
Aragones and Postlewaite (2000) consider a related model but assume complete informa-
tion. While the latter papers assume a one-dimensional policy space, Banks and Duggan
(2006a) prove existence of equilibria in multiple dimensions and give analytic results on
core equivalence. Work on electoral accountability differs from ours not only in removing
the commitment assumption and adding asymmetric information, but also in focusing on
stationary equilibria.2

Kramer (1977) takes a different approach by assuming office-motivated parties that can
commit to policy platforms before elections and allowing for multiple dimensions. His model
differs from ours, however, in that only the party out of power may choose a platform, while
the incumbent party is fixed at its previous position, and in that the parties optimize my-
opically. Alesina (1988) takes yet another approach by assuming policy-motivated parties
that cannot commit to policy platforms, assuming probabilistic voting, and considering a
specific class of non-stationary equilibria, namely, those using “Nash reversion” punish-
ments. Finally, McKelvey and Ordeshook (1985) and Shotts (2006) are examples of models
focusing on the informational aspects of repeated elections with private information.

The organization of the paper is as follows. In Section 2, we describe the repeated
elections framework. In Section 3, we present our equilibrium analysis. In Section 4, we
end with some brief concluding remarks. An appendix contains proofs of all of our theorems,
including diagrams of equilibrium constructions used in the proofs of Theorems 1 and 2.

1For an expository review of this literature, see Fearon (1999).
2As we show, in the repeated Downsian electoral model, stationarity implies core equivalence and, there-

fore, equilibrium existence problems in multiple dimensions.
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2 The Repeated Elections Framework

2.1 The Model

The players in our model are two parties, labeled A and B, and n voters, who participate in
an infinite sequence of elections. In each election, the parties simultaneously choose policy
platforms from some set X of policy alternatives, generically denoted x, x′, etc. At this
point, we impose no structure on the set X, allowing it to be finite or infinite, perhaps a
subset of the real line or a subset of multidimensional Euclidean space. We use y to denote
a platform choice by party A and z to denote a choice by B. In each period, once the
parties have selected platforms, the voters observe these choices and simultaneously cast
ballots for A or B. In every period, the election is determined by plurality rule, with the
party receiving the most votes implementing its platform for that period. In the event of a
tie, parties A and B each win with probability one half, i.e., the winner is decided by the
toss of a fair coin. We denote a generic policy in period t by xt, and we let x = (x1, x2, . . .)
denote an infinite path of policies.

A complete history of length t, denoted ht, is a list of the actions of all players in periods
1, 2, . . . , t, so that it lists the platforms of the parties, the votes of the voters in each period,
and, in case of electoral ties, the outcomes of coin flips to break ties. A partial history of
length t is a complete history of length t− 1 together with the platforms of the parties (but
not the votes of the voters) in period t. We define the initial history, denoted h0 = ∅, as
the empty list that describes the game at the beginning of period 1. A complete history is a
complete history of finite length; a partial history is a partial history of finite length; and an
infinite history is a list of platforms, votes, and (if applicable) coin tosses for every period.
We denote the set of all complete histories of length t by Ht and the set of all complete
histories by H =

⋃
t Ht. A strategy of a party P ∈ {A,B} is a mapping σP : H → X,

indicating the platform the party will adopt after different complete histories. Though our
focus is on pure strategies, it is important to allow for randomized voting strategies when
voters are indifferent. Thus, a strategy of a voter i is a mapping σi : H ×X ×X → [0, 1]
which gives the probability of a vote for party A for each complete history and platform
pair (y, z), i.e., each partial history. A profile of strategies is σ = (σA, σB, σ1, . . . , σn).

An electoral outcome in period t is (i) the platforms, yt and zt, chosen by the parties,
and (ii) the winner of the election in t (possibly determined by a tie-breaking coin flip),
denoted wt ∈ {0, 1}, where wt = 1 indicates a win for A and wt = 0 indicates a win for B.
Given a complete history ht, let

o(ht) = ((w1, y1, z1), (w2, y2, z2), . . . , (wt, yt, zt))

denote the sequence of electoral outcomes associated with ht. A strategy profile σ deter-
mines a distribution on infinite sequences of electoral outcomes, where randomness may
be introduced by mixed voting strategies and tied elections. This distribution, in turn,
determines a distribution on infinite paths of implemented policies.

We assume each voter i has a bounded utility function ui : X → R that reflects the
voter’s preferences over policies in any period. Let ui and ui denote upper and lower
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bounds, respectively, for the voter’s utility function.3 Write x M y if x is majority-preferred
to y, i.e., if the number of voters with ui(x) > ui(y) is greater than n/2. Define the core,
denoted K, as the set of majority undominated policies, i.e,

K = {x ∈ X | y M x for no y ∈ X}.
When voter preferences are single-peaked and X ⊆ R, it is well-known that K consists of
the median policies, i.e., x ∈ K if and only if the number of voters with ideal points to
either side of x is less than or equal to n/2. We also define the related relation M◦, as
x M◦ y if and only if the number of voters with ui(x) > ui(y) is greater than or equal
to n/2. This relation can violate asymmetry and is not generally equivalent to majority
preference, but the distinction disappears when the number of voters is odd. We define the
subcore, denoted K◦, as the set of M◦-undominated policies, i.e.,

K◦ = {x ∈ X | y M◦ x for no y ∈ X}.
Write x M∗ y if x is plurality-preferred to y, i.e., if the number of voters with ui(x) > ui(y)
is greater than the number of voters with ui(y) > ui(x). Define the plurality core, denoted
K∗, as the set of plurality undominated policies, i.e.,

K∗ = {x ∈ X | y M∗ x for no y ∈ X}.
It is clear that K∗ ∪K◦ ⊆ K, that K∗ and K◦ are not generally nested, and that K◦ = K

when n is odd.

We say the core K is strong if it consists of one policy, say x∗, and this policy is majority
preferred to all others: for all x ∈ X \ {x∗}, we have x∗ M x. The core is necessarily strong
if it is nonempty, n is odd, and voter preferences are linear.4 As well, the core is strong if it
is nonempty, n is odd, X is a convex subset of Euclidean space, and voter preferences are
strictly quasi-concave (as in the standard spatial model of politics). Clearly, when the core
is strong, the above concepts coincide, so that K∗ = K◦ = K.

Voters in our model are fully rational in that they consider the effect of their current
vote on future elections in deciding how to vote. We assume that, in order to evaluate these
effects, voter preferences over infinite histories are represented by the discounted sum of
utilities from policies over time, i.e.,

(1− δi)
∞∑

t=1

δt−1
i [wtui(yt) + (1− wt)ui(zt)],

where δi ∈ [0, 1) is the discount factor for voter i. Preferences over lotteries on outcome
paths are given by the expected discounted sum of utilities. Party P receives a payoff of
one when it wins, zero otherwise. Thus, we assume the parties are probability of winning
maximizers. Each has a discount rate δP ∈ [0, 1), and we assume A’s preferences over
infinite histories are given by

(1− δA)
∞∑

t=1

δt−1
A wt

3It should be noted that the assumption that utilities are bounded is not needed for the results in
section 3.1.

4We say preferences are linear if ui(x) = ui(x
′) implies x = x′. This case is of interest when X is finite.

Linearity is implicitly assumed in the literature on tournaments and voting in agendas. See Moulin (1986).
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and B’s preferences by

(1− δB)
∞∑

t=1

δt−1
B (1− wt).

Again, preferences over lotteries on outcome paths are given by expected discounted payoffs.

A specification of strategies for parties and voters is a subgame perfect equilibrium if
it satisfies the following: no party or voter has a different strategy that, following some
history, yields a distribution over outcome paths with a higher expected discounted sum of
utilities. We say a subgame perfect equilibrium supports a policy path x if the distribution
on infinite policy paths determined by the equilibrium strategies puts probability one on
x. Note that this can happen in one of two ways: in any period t, either both candidates
adopt platform xt or only party P adopts xt, and it wins with probability one. If there is
a subgame perfect equilibrium that supports x, then we say the path is supportable.

2.2 Equilibrium Refinements

In this section, we present some restrictions on strategies in order to rule out especially
implausible equilibria of the game. It is well-known that in infinitely repeated games with
sufficiently patient players, a large set of outcomes can typically be supported by subgame
perfect equilibria (Fudenberg and Maskin (1986)). The standard folk theorem places no
limitations, however, on the types of punishments that can be used by the equilibrium
supporting a particular outcome. In the context of repeated elections, we want to exclude
equilibria that are less compelling on the grounds of realism, such as those in which one
voter is singled out for voting the wrong way and punished in the future by parties and
other voters. Thus, we focus on equilibria in which the choices of voters and parties in any
period are conditioned only on previous electoral outcomes. We refer to this restriction as
“outcome stationarity.”

Definition 1 (OS) A strategy profile σ satisfies outcome stationarity if for all t and all
complete histories ht and h′t such that o(ht) = o(h′t),

1. for each party P , σP (ht) = σP (h′t), and

2. for all (y, z) and all i, σi(ht, y, z) = σi(h′t, y, z).

In other words, outcome stationarity requires that after any two histories with identical
sequences of outcomes, the specified platform choice of each party is the same and the
choices of the voters can only be conditioned on the parties’ choices of platforms in the
current period. Thus, following a complete history ht and platform choices of the parties,
y and z, each voter i can calculate the expected discounted sum of utilities if A is elected
and if B is elected in the current period, given the strategies of the other players. Denote
these continuation values by vi(ht, y, z, 1) and vi(ht, y, z, 0), respectively.

Even restricting the available strategies to those that satisfy outcome stationarity, it is
trivial to establish a folk theorem-like result. In fact, the result is much stronger than the
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standard folk theorem because it holds for arbitrary discount factors, not just a particular
range of values.

Proposition 1 If n ≥ 3, then every policy path is supportable by a subgame perfect equi-
librium satisfying (OS).

The proof of this proposition is straightforward. Let x be any given policy path. Specify
strategies to that both parties choose xt in period t, regardless of history. For the voters, as
long as both parties choose the prescribed platforms in each period, the voters randomize
their vote. If a party deviates from xt, then in that and all later periods, all voters vote
for the non-deviating party. Clearly, no player can gain by deviating. Subgame perfection
holds because (as n ≥ 3) it is a Nash equilibrium in the voting subgame for all voters to
vote for A, regardless of their preferences over candidate platforms; similarly, it is Nash for
all to vote for B.

The strategy profile specified above is clearly a subgame perfect equilibrium and satisfies
outcome stationarity, but it requires some voters to vote against their preferred party. The
standard response to this in a one-shot model is to eliminate weakly dominated strategies.
We follow this by assuming that each voter, while taking the strategies of all players in the
future as fixed, eliminates weakly dominated strategies in every voting subgame. In other
words, when the continuation value to player i of having A elected in the current period is
strictly higher than the continuation value of electing B, voter i votes for A, and similarly
for B. This is equivalent to requiring that all voters act as if they were pivotal in the current
period. Following Baron and Kalai (1993), we refer to this restriction as “stage game weak
dominance.”

Definition 2 (WD) A strategy profile σ satisfies stage game weak dominance if for every
complete history ht and all platforms y and z,

1. (1− δi)ui(y) + δivi(ht, y, z, 1) > (1− δi)ui(z) + δivi(ht, y, z, 0) implies σi(ht, y, z) = 1,
and

2. the reverse inequality implies σi(ht, y, z) = 0.

Stage game weak dominance requires voters with a strict preference to act accordingly,
but it does not restrict the actions of indifferent voters. While it is true that the choice
is irrelevant to such a voter, it can dramatically affect the choices of the parties. Now
assuming that parties are relatively patient, it is still trivial to support arbitrary policy
paths with equilibria satisfying outcome stationarity and stage game weak dominance.

Proposition 2 Let δP ≥ 1/2 for both parties. If K∗ 6= ∅, then every policy path is sup-
portable by a subgame perfect equilibrium satisfying (OS) and (WD).

Let x be any policy path. Specify strategies so that both parties choose xt in period t

and all voters flip fair coins to decide their votes, until a party, say A, deviates. Then in all
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future periods, both parties locate at a pre-specified plurality core policy, where each voter
votes for B whenever the expected discounted payoff from electing B is weakly higher than
from A. Along the equilibrium path, all voters are indifferent between the two parties, and
so it is a best response for the voters randomize, and voting strategies are by definition best
responses after a party deviates. Along the equilibrium path, each party receives a payoff
of one half. If A deviates to platform y such that yM∗xt, then A’s payoff may increase
in period t. Following that, however, a majority of voters will vote for B, and A loses
with probability one thereafter. Since δA ≥ 1/2, this deviation is not profitable. Note that
nonemptiness of the core can facilitate the construction of equilibria by providing a means
of punishing parties off the equilibrium path, a fact that we use later.

The “Nash reversion” equilibrium used in the argument for Proposition 2 satisfies out-
come stationarity and stage game weak dominance, but it depends critically on the possi-
bility that the parties are treated asymmetrically, even when they adopt identical platforms
(and are expected to always do so in the future). We therefore impose a last restriction,
augmenting stage game weak dominance, which we call “party symmetry.” Party symmetry
requires that when indifferent between the two parties, a voter flips a fair coin to decide.
Note that, as a consequence, if the inequality in Definition 2 holds for a plurality of voters
after some partial history, then party A wins with probability greater than one half.

Definition 3 (PS) A strategy profile σ satisfies party symmetry if for every complete
history ht, and all platforms y and z, (1 − δi)ui(y) + δivi(ht, y, z, 1) = (1 − δi)ui(z) +
δivi(ht, y, z, 0) implies σi(ht, y, z) = 1/2.

An alternative to outcome stationarity is a strengthening, called “strong stationarity,”
that requires parties to use strategies that are history-independent in each period and voters
to condition only on the platforms of the parties in the each period.

Definition 4 (SS) A strategy profile σ satisfies strong stationarity if for all t and all
complete histories ht and h′t,

1. for each party P , σP (ht) = σP (h′t), and

2. for all (y, z) and all i, σi(ht, y, z) = σi(h′t, y, z).

The next proposition shows that this strengthening of outcome stationarity is largely
uninteresting, as it brings us back to the Downsian core equivalence result.5 Note that the
“only if” direction in the following proposition does not rely on party symmetry because
strong stationarity and weak dominance are enough to imply that all voters must vote
sincerely in every period.

Proposition 3 If a policy path x is supportable by a subgame perfect equilibrium satisfying
(SS) and (WD), then xt ∈ K∗ for all t. Conversely, if xt ∈ K∗ for all t, then x is supportable
by a subgame perfect equilibrium satisfying (SS), (WD), and (PS).

5This proposition is similar to the result that the only Markov perfect equilibrium of an infinitely repeated
game is the infinite repetition of a stage game equilibrium.
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In a subgame perfect equilibrium satisfying strong stationarity, it is clear that contin-
uation values vi(ht, y, z, P ) are independent of ht, y, z, and P : regardless of their values,
the parties will each choose some y and z in period t + 1, and in every period thereafter,
and any voter who conditions only on those platforms will vote the same way in every
period. Similarly, the parties’ expected discounted payoffs are constant across all histories.
If policy path x is supported by such an equilibrium and xt /∈ K∗ for some t, then some
party locates at xt and wins with probability at least one half. Then the other party, say A,
can locate at y such that yM∗z = xt. Since continuation values are fixed, the plurality of
voters who strictly prefer y must, by weak dominance, vote for A, who therefore wins with
probability greater than one half. By stationarity, A’s continuation value does not change,
and the deviation is profitable, a contradiction. It is straightforward to construct equilibria
supporting paths in the plurality core for the converse direction of the proposition.

3 Equilibrium Analysis

3.1 Multiplicity of Equilibria

In this subsection, we show that subgame perfection, even augmented by our refinements,
is completely unrestrictive under two sets of conditions, each using a different logic to
support policy paths. Our first result focuses on voter patience, showing that if voters
place more weight on the future than on the present, then every path of policies can be
supported in equilibrium. This strengthens the usual conclusion of the folk theorem, which
is stated in terms of payoffs rather than outcomes, while at the same time imposing relatively
weak restrictions on discount factors: rather than assume that all players are arbitrarily
patient, we only restrict the patience of voters, and it is sufficient that voter discount factors
exceed one half. Furthermore, we support policy paths with equilibria satisfying a variety
of refinements, discussed in the previous section.

Theorem 1 Let δi > 1/2 for all voters. Then every policy path is supportable by a subgame
perfect equilibrium satisfying (OS), (WD), and (PS).

The equilibrium constructed in the appendix can be described roughly as follows. We
specify that both parties choose platform xt in period t, unless some party has deviated.
Along the equilibrium path, voters are indifferent between the parties and so flip coins to
decide their ballots, giving the parties expected discounted equilibrium payoffs of one half.
In any period where one party, say A, has deviated to y 6= xt, future policy platforms
depend on several factors. If xt M∗ y, then the deviation is ignored and the parties “return
to the equilibrium path.” If y M∗ xt, then future policy platforms depend on which party
wins: if the deviating party, A, wins, then the parties adopt xt in all future periods; if
party B wins, then the parties switch to the deviant platform, y, in all future periods. If
A deviates to y such that y M∗ xt, then voter i votes for A if ui(xt) > ui(y), votes for B

if the opposite inequality holds, and flips a coin if equality holds. Given the strategies of
the parties, and given that δi > 1/2, these voting strategies are best responses satisfying
stage game weak dominance and party symmetry. Given the strategies of the voters, no
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party has an incentive to deviate: if A deviates to y such that y M∗ xt, for example, then
a plurality of voters will vote for B, so A wins with probability less than one half in period
t (and will win with probability one half in the future), giving it an expected discounted
payoff less than one half.

We can obtain the result of Theorem 1 with even weaker conditions on voter discount
factors by assuming parties are relatively patient. The next theorem assumes that party
discount factors are at least one half and shows that if the discount factors of some voters
exceed a certain level, then every path of policies can be supported in equilibrium. The
critical discount factor level depends on the preferences of voters. If the core is nonempty,
for example, then it is essentially zero: as long as all voters put positive weight on the
future, every policy path is supportable.

Theorem 2 Let δP ≥ 1/2 for both parties. Assume there exists a policy x∗ such that (i)
x∗ M x0 for some policy x0, and (ii) for every policy x′, there exist a majority coalition
C and policies r and s such that for all voters i ∈ C, we have ui(r) ≥ ui(s) and, in case
ui(x′) ≥ ui(x∗), we also have

ui(x′)− ui(x∗)
ui(r)− ui(s) + ui(x′)− ui(x∗)

< δi.

Then every policy path is supportable by a subgame perfect equilibrium satisfying (OS),
(WD), and (PS).

The equilibrium constructed for Theorem 2 uses some of the same ideas as that for
Theorem 1, but it is more complex, so we leave the reader to the formal description in the
appendix. One difference between the constructions is of note. To prove Theorem 1, we
specified party strategies so that the parties always choose the same platform and, unless one
party deviated, voters treat the parties symmetrically. In proving Theorem 2, we also specify
that parties always choose the same platform, but in some subgames off the equilibrium
path, one party wins with probability one. This is consistent with voter incentives because
the parties’ current platforms are identical and, by design, the expectations about the
future are worse for a majority of voters if the out-party wins. A difficulty that arises is
the potential for the out-party to deviate profitably. Because we seek to use the weakest
possible assumptions on voters’ discount factors, we employ the incentives of relatively
patient parties and make use of the policy x∗ satisfying conditions (i) and (ii) of the theorem.
It is in this role that a subcore policy, if one exists, can facilitate the construction of
punishments off the equilibrium path.

Note that the demands on voter discount factors in Theorem 2 are indeed weaker than
in Theorem 1: if voter discount factors exceed one half, then x∗ can be specified as any
policy that is not bottom-ranked according to majority preferences, and r and s can be set
to x′ and x, respectively, to fulfill the conditions of the Theorem 2. Alternatively, when
the subcore is nonempty, we may specify x∗ as any element of that set that is not bottom-
ranked. Thus, Theorem 2 shows that the result of Proposition 2 can be obtained even if
party symmetry is imposed.

We can use Theorem 2 to express the critical discount factor level for voters in terms of
a measure of how close the subcore is to being nonempty. Let M denote the collection of
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all majority coalitions, and define

ψ◦(x) = sup
x′∈X

min
C∈M

max
i∈C

ui(x′)− ui(x).

Note that ψ is non-negative and that ψ◦(x) = 0 if and only if x ∈ K◦. Intuitively, ψ◦

measures how far the policy x is from being in the subcore, given the utility functions
u1, . . . , un. Accordingly, infx∈X ψ◦(x) measures how far voter utilities are from admitting a
non-empty subcore. Also, let

∆ = min
C∈M

sup
r,s∈X

min
i∈C

ui(r)− ui(s)

measure the possible incentives available to influence the most resistant majority coalition.
The following corollary of Theorem 2 provides a critical discount factor level for voters in
terms of these concepts.

Corollary 1 Let δP ≥ 1/2 for both parties. Assume there exists a policy x∗ such that (i)
x∗ M x0 for some policy x0, and (ii) for all voters i we have

ψ◦(x∗)
∆ + ψ◦(x∗)

< δi.

Then every policy path is supportable by a subgame perfect equilibrium satisfying (OS),
(WD), and (PS).

The lefthand side of the inequality in the corollary is increasing in ψ◦(x∗). Therefore,
the condition of the corollary implies that for all voters i and all policies x′,

minC∈Mmaxj∈C uj(x′)− uj(x∗)
∆ + minC∈Mmaxj∈C uj(x′)− uj(x∗)

< δi.

This in turn implies that for all voters i and all policies x′, there exists a majority C such
that

maxj∈C uj(x′)− uj(x∗)
∆ + maxj∈C uj(x′)− uj(x∗)

< δi.

Since the lefthand side is decreasing in ∆, it follows by construction that for all voters i

and all policies x′, there exist a majority, without loss of generality, C itself, and policies r

and s such that

maxj∈C uj(x′)− uj(x∗)
(minj∈C uj(r)− uj(s)) + (maxj∈C uj(x′)− uj(x∗))

< δi.

Choosing any voter i ∈ C, this yields the inequality in Theorem 2, and the conclusion of
the corollary follows.

Note that the existence of a policy satisfying condition (ii) of Corollary 1 can be written
more succinctly in the form

infx∈X ψ◦(x)
∆ + infx∈X ψ◦(x)

< δi,
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which uses our measure of how close the subcore is to being nonempty. To fulfill the
condition of Theorem 2, it must be that the infimum infx∈X ψ◦(x) can be approximated by
a policy that satisfies condition (i), i.e., it is majority preferred to at least one other policy,
necessitating the more complicated statement of the corollary. This added requirement is
quite weak, however, and by far the greater demand of the corollary is made in condition
(ii).

A further implication is immediate: if the subcore contains a policy x∗, then ψ◦(x∗) = 0,
and Corollary 1 implies that, assuming party discount factors are at least one half, every
policy path is supportable in equilibrium as long as x∗ is majority preferred to at least one
other policy and voter discount factors are strictly positive.

Corollary 2 Let δP ≥ 1/2 for both parties, and assume there exists a policy x∗ ∈ K◦

such that x∗ M x0 for some policy x0. If δi > 0 for all voters, then every policy path is
supportable by a subgame perfect equilibrium satisfying (OS), (WD), and (PS).

The lefthand side of the inequality in Corollary 1 goes to zero with ψ◦(x∗). Thus, it
becomes easier to fulfill condition (ii) and to support policy paths when the subcore is
closer to nonempty. As well, the lefthand side is decreasing in the available incentives ∆,
so that, as we would expect, it becomes easier to support paths when stronger incentives
are available. The next corollary uses the former observation to state a last implication of
Theorem 2. We use the notation K(u1, . . . , un) to denote the core generated by the utilities
u1, . . . , un, and let ∆(u1, . . . , un) denote the corresponding available incentives.

Corollary 3 Let δP ≥ 1/2 for both parties, and let δi > 0 for all voters. Assume that
X is a compact topological space, that ui is continuous for all voters, that K(u1, . . . , un)
is nonempty and strong, and that ∆(u1, . . . , un) > 0. Let {(um

1 , . . . , um
n )} be a sequence of

profiles of continuous utility functions converging uniformly to (u1, . . . , un). Then, for high
enough m, every policy path is supportable by a subgame perfect equilibrium satisfying (OS),
(WD), and (PS).

To see this result, let K(u1, . . . , un) = {x∗}. Define the mapping φ from policy pairs
and profiles of continuous utility functions by

φ(x, x′, û1, . . . , ûn) = min
C∈M

max
i∈C

ûi(x′)− ûi(x),

where we topologize the space of utility profiles by the sup norm. Then φ is jointly contin-
uous, and the Theorem of the Maximum implies that the function

inf
x∈X

sup
x′∈X

φ(x, x′, û1, . . . , ûn)

is continuous in (û1, . . . , ûn). Since this function is equal to zero at (u1, . . . , un), by the
assumption that the core at (u1, . . . , un) is nonempty, it follows that it goes to zero as
m increases. Furthermore, for each m, the infimum over x is achieved at some xm. The
terms ∆(um

1 , . . . , um
n ) converge to ∆(u1, . . . , un), and it follows that for high enough m, xm

satisfies condition (i) of Corollary 1. By compactness, the sequence {xm} has a convergent
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subsequence, which, by the Theorem of the Maximum, must have limit x∗. Let x0 be any
policy distinct from x∗, so x∗ is majority preferred to x0 at (u1, . . . , un). Then we may
choose m high enough so that xm satisfies (i) as well as (ii) of Theorem 2, delivering the
result.

3.2 Non-existence of Equilibria

In contrast to Theorem 1, which establishes an abundance of subgame perfect equilibria
when voter discount factors exceed one half, the next result shows that if voter discount
factors lie strictly below a critical level, then subgame perfect equilibria satisfying our
refinements do not exist. (Note that we do not impose party symmetry in the theorem.) We
know from Theorem 2 that when the subcore is nonempty and voters have positive, though
possibly small, discount factors, equilibria do exist. Indeed, when the core is nonempty, our
next result has no bite, as the critical discount factor is zero. As long as the core is empty,
however, it tells us that the equilibrium existence problem for one-shot elections carries over
to the dynamic setting if voters are sufficiently impatient.

Theorem 3 Assume for every policy x there exists a policy x′ and a majority coalition C

such that for all voters i ∈ C,

ui(x′)− ui(x)
ui − ui + ui(x′)− ui(x)

> δi.

Then there does not exist a subgame perfect equilibrium satisfying (OS) and (WD).

It is interesting to compare Theorem 3 to Theorem 1. Since the latter result gives
conditions under which equilibria exist, the sufficient condition there must be inconsistent
with the condition of Theorem 3. Indeed, the inequality there implies that some voters’
discount factors are less than one half. Since Theorem 3 allows for patient parties, the same
relationship must hold between Theorems 2 and 3. Let x∗ be as in Theorem 2. Then the
condition of Theorem 3 implies the existence of x′ and a majority C such that for all i ∈ C,

ui(x′)− ui(x∗)
ui − ui + ui(x′)− ui(x∗)

> δi.

But then the condition of Theorem 2 implies the existence of majority C ′ and policies r

and s such that for all i ∈ C ′,

ui(x′)− ui(x∗)
ui(r)− ui(s) + ui(x′)− ui(x∗)

< δi.

Since C and C ′ are both majorities, there is some voter i common to both, but ui − ui ≥
ui(r)−ui(s), a contradiction. Thus, the conditions of the theorems are indeed incompatible.

We can use Theorem 3 to express the critical discount factor level for voters in terms
of a measure of how close the core is to being nonempty, but now our measure is slightly
different than before. Define

ψ(x) = sup
x′∈X

max
C∈M

min
i∈C

ui(x′)− ui(x).
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In contrast to our definition of ψ◦, we now maximize over majority coalitions and minimize
over members of the coalition. Note that ψ is non-negative and that ψ(x) = 0 if and only
if x ∈ K. Intuitively, ψ measures how far the policy x is from being in the core, given
the utility functions u1, . . . , un. Accordingly, infx∈X ψ(x) measures how far voter utilities
are from admitting a nonempty core. To see the relationship between the two measures,
fix x′ and index voters i(1), . . . , i(n) in increasing order of the quantity ui(x′)− ui(x), i.e.,
ui(k)(x′)−ui(k)(x) ≤ ui(k+1)(x′)−ui(k+1)(x) for all k = 1, . . . , n−1. Then it is straightforward
to show that

min
C∈M

max
i∈C

ui(x′)− ui(x) = ui(dn+1
2
e)(x

′)− ui(dn+1
2
e)(x)

and

max
C∈M

min
i∈C

ui(x′)− ui(x) = ui(bn+1
2
c)(x

′)− ui(bn+1
2
c)(x).

Therefore, we have ψ◦(x) ≥ ψ(x) for all x, with the two measures being equal when the
number of voters is odd.

Because there is no issue about whether a certain policy is majority preferred to another,
we can now write our sufficient conditions in a more compact form than in Corollary 1.

Corollary 4 Assume that for all voters we have

infx∈X ψ(x)
ui − ui + infx∈X ψ(x)

> δi.

Then there does not exist a subgame perfect equilibrium satisfying (OS) and (WD).

Note that the critical discount factor level in Corollary 4 is decreasing in our measure of
distance from nonemptiness of the core, and that it in fact goes to zero with that measure.
Thus, it becomes more difficult to obtain non-existence when the core is closer to nonempty.
On the other hand, if we fix voter utilities (u1, . . . , un) so that the core is empty, then the
next corollary confirms that equilibria fail to exist when voter discount factors fall below a
given positive level. As a consequence, only those policy paths in the core are supportable
for arbitrarily low voter discount factors.

Corollary 5 Assume that X is a compact topological space, that ui is continuous for all
voters, and that K = ∅. Then there exists δ > 0 such that, when δi < δ for all voters, there
does not exist a subgame perfect equilibrium satisfying (OS) and (WD).

To prove the corollary, we invoke the Theorem of the Maximum to obtain continuity
of ψ. Since X is compact and infx∈X ψ(x) > 0, it follows that ψ achieves its minimum at
some policy x. Since this minimum is positive, the critical level in Corollary 4 is positive,
so we may set

δ =
ψ(x)

maxi∈N (ui − ui) + ψ(x)
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to fulfill the claim of the corollary.

We can refine Theorem 3 if we add the assumption that parties are relatively impatient.
Assuming party discount factors are less than one half, we can strengthen the conclusion of
Theorem 3 in two ways: we can state the result for particular policy paths, and we can state
the result using the existential quantifier over t (rather than the universal quantifier over
x). The latter improvement is possible because, when parties are impatient, it is sufficient
that either party can deviate and win in at least one period.

Theorem 4 Let δP < 1/2, and let x be a policy path. Assume there exists a period t, a
policy x′, and a majority coalition C such that for all voters i ∈ C,

ui(x′)− ui(xt)
ui − ui + ui(x′)− ui(xt)

> δi.

Then the path x is not supportable by a subgame perfect equilibrium satisfying (OS) and
(WD).

As above, we can formulate Theorem 4 in terms of a measure of distance from the core.
Now, however, our measure takes the supremum over time periods, rather than an infimum
over policies, reflecting the fact that the proof of the theorem may operate on the policy
on the path furthest from being in the core. In other words, we are measuring how far the
entire path is from lying in the core.

Corollary 6 Let δP < 1/2 for the parties, and let x be a policy path. Assume that for all
voters we have

supt∈N ψ(xt)
ui − ui + supt∈N ψ(xt)

> δi.

Then the path x is not supportable by a subgame perfect equilibrium satisfying (OS) and
(WD).

As before, the critical discount factor level in Corollary 6 is decreasing in our measure of
distance from the core, and it in fact goes to zero with that measure. Thus, it becomes more
difficult to support paths that are further from lying in the core. If the core is empty, then
we have supt∈N ψ(xt) > 0 for all paths, and by a Theorem of the Maximum argument, we
can show that equilibria fail to exist when voter discount factors fall below a given positive
level. We omit the formal statement of this result, as it follows the lines above.

3.3 Core Equivalence

We have seen from Proposition 3 that strong stationary pins down subgame perfect equi-
libria substantially, if they exist: a policy path is supportable if and only if it lies in the
plurality core. In this section, we drop strong stationarity and seek weaker conditions under
which the equilibrium outcomes of our model are equivalent to the core. An implication of
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Proposition 3 is that every policy path through the plurality core can be supported by a
subgame perfect equilibrium, in fact, by a strongly stationary one. In the remainder of this
section, we give sufficient conditions for the opposite inclusion, namely, that all supportable
policy paths must lie in the core. An implication of Corollary 5 is that only paths in the
core can be supported for arbitrarily small voter discount factors, but we are interested
in core equivalence for a non-trivial range of discount factors. Clearly, Theorem 1 implies
that voters cannot have discount factors greater than one half. And since we consider an
environment in which the core is nonempty, Theorem 2 implies that party discount factors
also must be less than one half.

Our final result imposes these restrictions on discount factors, with a slight strengthening
in the case of party discount factors: we assume they are less than one third. We add the
following strong, but standard, conditions: the number of voters is odd, the policy space
is Euclidean, voter utilities are quadratic, i.e., ui(x) = −||x − x̂i||2 for each i, where x̂i

is i’s “ideal point,” and the ideal points of the voters are distinct, i.e., x̂i = x̂j implies
i = j. Furthermore, the theorem requires the non-emptiness of the core, an assumption
that is automatically satisfied in one dimension but quite restrictive in multiple dimensions.
Recall that under these conditions, the core consists of a single point, the ideal point of the
“core” voter.

Theorem 5 Assume that n is odd, that the utility functions ui are quadratic with distinct
ideal points, and that K 6= ∅. Let δi = δ < 1/2 for all voters, and let δP < 1/3 for the
parties. Then x is supportable by a subgame perfect equilibrium satisfying (OS), (WD), and
(PS) if and only if xt ∈ K for all t.

Thus, for a range of discount factors, we essentially obtain uniqueness of subgame perfect
equilibria satisfying our refinements, in contrast to the stark multiplicity results of Theorems
1 and 2. The parties must locate at the core point, lending a non-cooperative foundation
to the social choice concept of the core and, for the one-dimensional special case, providing
a game-theoretic version of the median voter theorem in the context of repeated Downsian
elections. The proof uses a result of Banks and Duggan (2006b) on the decisiveness of the
core voter and focuses on necessary conditions satisfied by equilibrium policies furthest from
the core. Because we assume party discount factors are less than one third, rather than one
half, Theorem 5 leaves a slight gap. We conjecture that the core equivalence result extends
to this region of the parameter space, but we leave the question open.

4 Conclusion

We have shown that, if voters are relatively patient, or if parties are relatively patient
and the subcore is close to non-empty, then there is a subgame perfect equilibrium of
the infinitely repeated electoral game. This is true regardless of the dimensionality of
the policy space or voter preferences, providing a solution to the equilibrium existence
problem. This sword is double-edged, however, for, in fact, every path of policies can be
supported by a refinement of subgame perfect equilibria. As a consequence, the sharp
predictions of the median voter theorem — and more generally core equivalence in multiple
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dimensions with a non-empty core — are endangered. We show that the median voter
theorem holds if parties and voters are sufficiently impatient, but then we lose existence of
equilibria in multiple dimensions when the core is empty. To achieve a general equilibrium
existence result that preserves the Median Voter Theorem in a model of infinitely repeated
elections, we conclude that the background assumptions of the Downsian model must be
re-examined. As in the electoral accountability approach, alternatives may involve policy
motivations for candidates, dropping the commitment assumption (as in the literature on
citizen-candidates), allowing for imperfect information about voter preferences (as in the
literature on probabilistic voting), or some combination of these directions.

A Proofs of Theorems

Theorem 1 Let δi > 1/2 for all voters. Then every policy path is supportable by a subgame
perfect equilibrium satisfying (OS), (WD), and (PS).

Proof : Let x = (x1, x2, . . .) be any policy path. We construct a subgame perfect equilibrium
to support x by labeling each complete history and each partial history. The labeling rule,
defined recursively below, will simplify our specification of strategies. We begin by labeling
the initial (complete) history with P-Eq(0). Next, we label all partial histories. If a complete
history ht−1 is labeled P-Eq(t−1), then we interpret this to mean “the parties have followed
the desired path of play through period t−1 and will continue to do so.” In this case, given
platforms (y, z), label the partial history (ht−1, y, z) as follows:

• ADev(y, xt) if y M∗ xt = z,

• BDev(z, xt) if z M∗ xt = y, and

• V-Eq(t) in all other cases.

Thus, if the parties both choose xt, or if one party deviates to something not plurality-
preferred to xt, or if both parties deviate to other platforms, then the labeling continues
to reflect that we follow the desired path of play. On the other hand, if a party, say A,
deviates to some y such that y M∗ xt, then we label the partial history with ADev(y, xt).

If a complete history ht−1 is labeled P-Absorb(x), then we interpret this to mean “the
parties are supposed to choose x in period t and will do so ever after.” Given platforms
(y, z), label the partial history (ht−1, y, z) as follows:

• ADev(y, x) if y M∗ x = z,

• BDev(z, x) if z M∗ x = y, and

• V-Absorb(x) in all other cases.

Once again, the labeling changes if a party, say A, deviates to some y that is plurality-
preferred to x.
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Lastly, we label all complete histories (other than the initial history). If a partial
history (ht−1, y, z) is labeled V-Eq(t), then we interpret this to mean that “the parties chose
the specified equilibrium policies or that no party has unilaterally deviated to a plurality
preferred policy.” Here, the labeling of the complete history does not depend on who wins.
That is, the resulting complete history ht is labeled P-Eq(t).

Similarly, if a partial history (ht−1, y, z) is labeled V-Absorb(x), then the resulting com-
plete history ht is labeled P-Absorb(x). We interpret the label VAbsorb(x) to mean “the
parties chose policy x, as required, or no party has unilaterally deviated to a plurality pre-
ferred policy.” In this case, the labeling of the resulting complete history is independent of
the outcome of voting.

If the partial history (ht−1, y, z) is labeled ADev(y, x), then we interpret this to mean
“the parties were both supposed to choose x but A deviated to y.” In this case, the labeling
of the resulting complete history depends on which party wins the election in period t. We
label the complete history ht as follows:

• P-Absorb(x) if A wins the election in period t, and

• P-Absorb(y) if B in period t.

Thus, if A deviates from x to y and wins, then the resulting history is labeled P-Absorb(x),
i.e., the original policy outcome ever after. If A deviates and B wins, then the resulting
history is labeled P-Absorb(y), i.e., A’s deviation forever. Since we suppose y M∗ x, this
will give a plurality of voters an incentive to vote against A.

Similarly, if a partial history (ht−1, y, z) is labeled BDev(z, x), then label the complete
history ht as follows:

• P-Absorb(x) if B wins the election in period t, and

• P-Absorb(z) if A in period t.

We next specify strategies for parties and voters.

1. Parties:

(a) If ht−1 is labeled P-Eq(t− 1), then the parties adopt platforms yt = zt = xt.

(b) If ht−1 is labeled P-Absorb(x), then both adopt yt = zt = x.

2. Voters:

(a) If the partial history (ht−1, y, z) is labeled V-Eq(t) or V-Absorb(x), then voter
i votes for A if ui(y) > ui(z); i votes for B if this inequality is reversed; and i

votes for the parties with equal probabilities if ui(y) = ui(z).

(b) If (ht−1, y, z) is labeled ADev(y, x), then voter i votes for A if ui(x) > ui(y); i

votes for B if this inequality is reversed; and i votes for the parties with equal
probabilities if ui(x) = ui(y).
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Figure 1: Labels and strategies in the proof of Theorem 1

(c) If (ht−1, y, z) is labeled BDev(z, x), then voter i votes for B if ui(x) > ui(z); i

votes for A if this inequality is reversed; and i votes for the parties with equal
probabilities if ui(x) = ui(z).

The labeling rule and strategies we use are diagrammed in Figure 1, where arrows
denote the labeling rule for partial and complete histories as a function of party platforms
and election returns. The text below the labels give the equilibrium actions for parties and
voters. Double arrows indicate equilibrium strategies. Here, “myopic” indicates that voters
vote for the policy they prefer in the current period, while “reverse myopic” indicates that
voters vote against the policy they prefer in the current period. For clarity, we only include
deviations by A in the figure.

We now verify that the above specification of strategies is, indeed, subgame perfect and
satisfies (OS), (WD), and (PS). To establish subgame perfection, by the one-shot deviation
principle (Fudenberg and Tirole, 1991), we need show only that no party or voter can achieve
a higher expected discounted payoff by a “one-shot deviation” following any history. That
is, we need to show, given an arbitrary history, that no party or voter can profit by deviating
in the following period and returning to the above strategy thereafter. Consider a voter
i’s decision after a partial history (ht−1, y, z) labeled V-Eq(t). Regardless of the winner in
period t, according to the above strategies, the parties will choose the same platforms in
subsequent periods, namely, xt+1, xt+2, . . . , so vi(ht−1, y, z, 1) = vi(ht−1, y, z, 0). It is a
best response to vote for A if

(1− δi)ui(y) + δivi(ht−1, y, z, 1) ≥ (1− δi)ui(z) + δivi(ht−1, y, z, 0),
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which is equivalent to ui(y) ≥ ui(z), and voting for B is a best response if ui(z) ≥ ui(y).
Similarly, after a partial history (ht−1, y, z) labeled V-Absorb(x), the above strategies specify
that the parties both choose x forever, and thus 2(a) is a best response.

After a partial history (ht−1, y, z) labeled ADev(y, x), the policy path depends on which
party wins in period t. If A wins, then, according to the above strategies, both parties will
choose x thereafter, so vi(ht−1, y, z, 1) = ui(x); if B wins, then both parties will choose y

thereafter, so vi(ht−1, y, z, 1) = ui(y). Thus, it is a best response for i to vote for A if

(1− δi)ui(y) + δiui(x) ≥ (1− δi)ui(x) + δiui(y).

Since δi > 1/2, this is equivalent to ui(x) ≥ ui(y), and it is a best response to vote for
A if ui(x) ≥ ui(y), likewise for B if ui(y) ≥ ui(x), as in 2(b). Note that, since y M∗ x

by construction, the latter holds for a plurality of voters, so B will win with probability
greater than one half in period t. The analysis is similar after a partial history (ht−1, y, z)
labeled BDev(z, x), but, in these cases, A wins with probability greater than one half in
period t. We conclude that the strategies specified above for voters are best responses after
all histories.

We now turn to the parties. Consider the decision of a party, say A, after a history
ht−1 labeled P-Eq(t − 1). According to the strategies specified above, the parties both
choose xt in period t and follow x thereafter, the voters flip coins to decide between parties
in all periods, and A’s expected discounted payoff is one half. If A deviates by choosing
platform y 6= xt and following the above strategy thereafter, then there are two possibilities.
First, if y M∗ xt, then (ht−1, y, xt) is labeled ADev(y, xt). By 2(b), with some probability
πA < 1/2, party A wins, the resulting complete history ht is labeled P-Absorb(xt), and
the voters randomize thereafter, giving the party an expected discounted payoff of one
half. With probability πB = 1 − πA > 1/2, party B wins, and the new history is labeled
P-Absorb(y). After that history, according to 1(b) above, both parties choose y and, by
2(a), voters randomize between the parties thereafter. Thus, A’s expected discounted payoff
from deviating is

πA((1− δA)(1) + δA(1/2)) + πB((1− δA)(0) + δA(1/2)

= (1− δA)(πA) + δA(1/2),

which is less than one half, since πA < 1/2. Second, if not y M∗ xt, then (ht−1, y, xt)
is labeled with P-Eq(t). By 2(a), A wins with probability πA ≤ 1/2 and B wins with
probability πB ≥ 1/2. By 1(a) and 2(a), both parties follow the path x and voters randomize
between them thereafter. Thus, A’s expected discounted payoff from deviating is less than
or equal to one half. The logic following a history ht labeled P-Absorb(x) is similar: if
a party deviates to a platform plurality-preferred to x, then it will win in period t with
probability less than one half and win half the time thereafter; if it deviates to a platform
not plurality-preferred to x, then it can do no better than win half the time in t, and it
wins half the time thereafter. We conclude that party A, likewise party B, has no profitable
one-shot deviations.

Thus, the above specification of strategies is a subgame perfect equilibrium, and it
clearly supports x. That it satisfies (OS) follows from two observations: the labeling rule
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for complete histories only depends on past electoral outcomes; and strategies, in turn, only
depend on labels. Finally, (WD) and (PS) are clear from the preceding arguments.

Theorem 2 Let δP ≥ 1/2 for both parties. Assume there exists a policy x∗ such that (i)
x∗ M x0 for some policy x0, and (ii) for every policy x′, there exist a majority coalition
C and policies r and s such that for all voters i ∈ C, we have ui(r) ≥ ui(s) and, in case
ui(x′) ≥ ui(x∗), we also have

ui(x′)− ui(x∗)
ui(r)− ui(s) + ui(x′)− ui(x∗)

< δi.

Then every policy path is supportable by a subgame perfect equilibrium satisfying (OS),
(WD), and (PS).

Proof : Let x∗ be as in the statement of the theorem, let x0 be such that x∗ M x0, and for
every x′, let C(x′), r(x′), and s(x′) fulfill the condition of the theorem. Let x = (x1, x2, . . .)
be any policy path. As in the proof of Theorem 1, we label each complete history and each
partial history. Following the proof of Theorem 1, the labeling rule is defined recursively
as follows. The initial (complete) history is labeled P-Eq(0). As before, a complete history
ht−1 labeled P-Eq(t− 1) is interpreted to mean “the parties have followed the desired path
of play through period t − 1 and will continue to do so.” In this case, label the partial
history (ht−1, y, z) as follows:

• ADev if y M∗ xt = z,

• BDev if z M∗ xt = y, and

• V-Eq(t) in all other cases.

Similarly, if a complete history ht−1 is labeled P-Absorb(x∗), then we interpret this to
mean “the parties are supposed to choose x∗ in period t and will do so ever after.” In this
case, label the partial history (ht−1, y, z) as follows:

• ADev if y M∗ x∗ = z,

• BDev if z M∗ x∗ = y, and

• V-Absorb(x∗) in all other cases.

If a complete history ht−1 is labeled P-ADevWin, then we interpret this to mean “party
A deviated from the desired path in the previous period and won the election,” and similarly
for P-BDevWin. If the complete history ht−1 is labeled P-ADevWin, label the partial history
(ht−1, y, z) as follows:

• ADevDev(y) if y 6= z = x∗,
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• BDevDev(z) if z 6= y = x∗, and

• V-ADevWin in all other cases.

Similarly, if the complete history ht−1 is labeled P-BDevWin, then label the partial
history (ht−1, y, z) as follows:

• ADevDev(y) if y 6= z = x∗,

• BDevDev(z) if z 6= y = x∗, and

• V-BDevWin in all other cases.

If a complete history ht−1 is labeled P-DDev(x), then we interpret this to mean “some
party deviated from the desired path of play; this was followed by another deviation; and
from now on the parties will both choose x.” In this case, label the partial history (ht−1, y, z)
as follows:

• ADev if y M∗ z = x,

• BDev if z M∗ y = x, and

• V-DDev(x) in all other cases.

Lastly, we label all complete histories (except the initial history). We denote by P the
winning party following ht−1 and platform choices (y, z). If a partial history (ht−1, y, z) is
labeled V-Eq(t), then we interpret this to mean “the parties chose the specified equilibrium
policies or no party has unilaterally deviated to a plurality preferred policy.” Here, the
labeling of the complete history does not depend on who wins. That is, the resulting
complete history ht is labeled P-Eq(t).

Similarly, if a partial history (ht−1, y, z) is labeled V-Absorb(x), then the resulting com-
plete history ht is labeled P-Absorb(x). We interpret the label VAbsorb(x) to mean “the
parties chose policy x, as required, or no party has unilaterally deviated to a plurality pre-
ferred policy.” In this case, the labeling of the resulting complete history is independent of
the outcome of voting.

If the partial history (ht−1, y, z) is labeled ADev, then we interpret this to mean “party
A deviated from the desired path of play in the previous period.” In this case, the labeling
of the resulting complete history depends on which party wins the election in period t. We
label the complete history ht as follows:

• P-ADevWin if P = A, and

• P-Absorb(x∗) if P = B.

Likewise, if the partial history (ht−1, y, z) is labeled BDev, we label the complete history
ht as follows:
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• P-Absorb(x∗) if P = A, and

• P-ADevWin if P = B.

If the partial history (ht−1, y, z) is labeled V-ADevWin, then we interpret this to mean
“party A deviated from the desired path in a previous period and won.” We label the
complete history ht as follows:

• P-DDev(x0) if P = A, and

• P-ADevWin if P = B.

Likewise, if the partial history (ht−1, y, z) is labeled V-BDevWin, then we label the
complete history ht as follows:

• P-BDevWin if P = A, and

• P-DDev(x0) if P = B.

If the partial history (ht−1, y, z) is labeled ADevDev(y), then we interpret this to mean
“after a previous deviation from the desired path, and party A has deviated in period t to
y.” In this case, the labeling of the resulting complete history again depends on the winning
party in period t. We label the complete history ht as follows:

• P-DDev(s(y)) if P = A, and

• P-DDev(r(y)) if P = B.

Likewise, if the partial history (ht−1, y, z) is labeled BDevDev(z), then we label the
complete history ht as follows:

• P-DDev(r(y)) if P = A, and

• P-DDev(s(y)) if P = B.

Finally, if the partial history (ht−1, y, z) is labeled V-DDev(x), then we interpret this to
mean “some party deviated from the desired path of play, followed by another deviation, and
the parties are to choose x forever.” In this case, the labeling of the complete history does
not depend on who wins. That is, the resulting complete history ht is labeled P-DDev(x).

We next specify strategies for parties and voters.

1. Parties:

(a) If ht−1 is labeled P-Eq(t− 1), then the parties adopt platforms yt = zt = xt.

(b) If ht−1 is labeled P-Absorb(x∗) or P-ADevWin or P-BDevWin, then both adopt
yt = zt = x∗.
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(c) If ht−1 is labeled P-DDev(x), then both adopt yt = zt = x.

2. Voters:

(a) If the partial history (ht−1, y, z) is labeled V-Eq(t), V-Absorb(x∗), ADev, BDev,
or V-DDev(x), then voter i votes for A if ui(y) > ui(z); i votes for B if this
inequality is reversed; and i votes for the parties with equal probabilities if
ui(y) = ui(z).

(b) If (ht−1, y, z) is labeled V-ADevWin, then voter i votes for B if

(1− δi)ui(z) + δiui(x∗) > (1− δi)ui(y) + δiui(x0);

voter i votes for A if this inequality is reversed; and i votes for the parties with
equal probabilities if equality holds.

(c) If (ht−1, y, z) is labeled V-BDevWin, then voter i votes for A if

(1− δi)ui(y) + δiui(x∗) > (1− δi)ui(z) + δiui(x0);

voter i votes for B if this inequality is reversed; and i votes for the parties with
equal probabilities if equality holds.

(d) If (ht−1, y, z) is labeled ADevDev(y), then voter i votes for B if

(1− δi)ui(z) + δiui(r(y)) > (1− δi)ui(y) + δiui(s(y));

voter i votes for A if this inequality is reversed; and i votes for the parties with
equal probabilities if equality holds.

(e) If (ht−1, y, z) is labeled BDevDev(z), then voter i votes for A if

(1− δi)ui(y) + δiui(r(z)) > (1− δi)ui(z) + δiui(s(y));

voter i votes for B if this inequality is reversed; and i votes for the parties with
equal probabilities if equality holds.

As in the previous proof, we illustrate the labeling rule and strategies in Figure 2. As
before, arrows denote the labeling rule for partial and complete histories as a function of
party platforms and election returns. The text below the labels give the equilibrium actions
for parties and voters. Double arrows indicate equilibrium strategies. Here, “myopic”
indicates that voters vote for the policy they prefer in the current period, while “2(b)” and
“2(d)” refer to the strategies listed above in which voters anticipate the future choices of
parties. For clarity, we only include deviations by A in the figure.

To show that these strategies form a subgame perfect equilibrium, it is sufficient, by
the one-shot deviation principle, to show there is no history at which a party or voter can
profitably deviate that period and return to the above strategy thereafter. Consider a voter
i’s decision after a partial history (ht−1, y, z) labeled V-Eq(t). Regardless of the winner
in period t, according to the above strategies, the parties will choose the same platforms
thereafter, namely, xt+1, xt+2, . . . , so vi(ht−1, y, z, 1) = vi(ht−1, y, z, 0). It is a best response
to vote for A if

(1− δi)ui(y) + δivi(ht−1, y, z, 1) ≥ (1− δi)ui(z) + δivi(ht−1, y, z, 0),
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Figure 2: Labels and strategies in the proof of Theorem 2
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which is equivalent to ui(y) ≥ ui(z), and voting for B is a best response if ui(z) ≥ ui(y), so
2(a) gives the voters’ best responses. Similarly, after (ht−1, y, z) labeled V-Absorb(x∗), the
above strategies specify that the parties both choose x∗ forever, and 2(a) is a best response.
After (ht−1, y, z) labeled V-DDev(x), the parties both choose x forever, so 2(a) is a best
response. Next, consider a partial history (ht−1, y, z) labeled ADev. If B wins, then the
complete history ht is labeled P-Absorb(x∗), and both parties choose x∗ thereafter. Thus,
vi(ht−1, y, z, 0) = ui(x∗). If A wins, then ht is labeled P-ADevWin, and, by 1(b), the parties
both choose x∗ in period t + 1. Then, by 2(b), voter i votes for B if ui(x∗) > ui(x0), so a
majority of voters vote for B, and B wins with probability one. According to our labeling
rule, future histories are labeled V-ADevWin and P-ADevWin, and B continues to win
thereafter with platform x∗. Thus, vi(ht−1, y, z, 1) = ui(x∗). Again, voting for A is a best
response if ui(y) ≥ ui(z), and voting for B is a best response if ui(z) ≥ ui(y), so 2(a) is
a best response. Applying the same argument, 2(a) is also a best response for a partial
history labeled BDev.

After (ht−1, y, z) labeled V-ADevWin, the policy path depends on which party wins in
period t. If B wins, then the complete history ht is labeled P-ADevWin, and the above
strategies specify that both parties will choose x∗ thereafter, so vi(ht−1, y, z, 0) = ui(x∗). If
A wins, then ht is labeled P-DDev(x0), where, by 1(c), the parties both choose x0 thereafter,
implying vi(ht−1, y, z, 1) = ui(x0). Thus, it is a best response for i to vote for B if

(1− δi)ui(z) + δiui(x∗) ≥ (1− δi)ui(y) + δiui(x0),

and 2(b) is a best response. For V-BDevWin, the same argument shows that 2(c) is a best
response.

Now consider a partial history (ht−1, y, z) labeled ADevDev(y). If B wins in period t, the
complete history ht is labeled P-DDev(r(y) and both parties adopt r(y) in all following peri-
ods. This implies that vi(ht−1, y, z, 0) = ui(r(y)). If A wins, then ht is labeled P-DDev(s(y),
where both parties choose s(y) thereafter, so vi(ht−1, y, z, 1) = ui(s(y)). Thus, it is a best
response for i to vote for B if

(1− δi)ui(z) + δiui(r(y)) ≥ (1− δi)ui(y) + δiui(s(y)),

and voting for A is a best response if the opposite weak inequality holds, as in 2(d). Note
that if x∗ = z, then for all i ∈ C(y) with ui(y) ≥ ui(x∗), we have

ui(y)− ui(x∗)
ui(r(y))− ui(s(y)) + ui(y)− ui(x∗)

< δi

by assumption. Using ui(r(y)) ≥ ui(s(y)), this implies that for all i ∈ C(y), we have

(1− δi)ui(x∗) + δiui(r(y)) > (1− δi)ui(y) + δiui(s(y)).

Therefore, by 2(d), a majority of voters vote for B, and B wins with probability one. A sim-
ilar calculation shows that 2(e) is a best response at a partial history labeled BDevDev(z).
In that case, if y = x∗, then a majority of voters vote for A, and A wins with probability
one. We conclude that the above voting strategies specify best responses after all histories.

Turning to the parties, consider the decision of a party, say A, after a complete history
ht−1 labeled P-Eq(t − 1). According to the strategies specified above, the parties both
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choose xt in period t and follow x thereafter, the voters flip coins to decide between parties
in all periods, and A’s expected discounted payoff is one half. If A deviates to y such that
y M∗ xt, then the partial history (ht−1, y, z) is labeled ADev and, by 2(a), party A wins
with probability πA > 1/2 in period t. The resulting complete history ht is then labeled
P-ADevWin, and, according to the strategies specified above, A wins with probability zero
thereafter. Party B wins with probability πB = 1 − πA < 1/2 in period t, after which the
history ht is labeled P-Absorb(x∗), and A’s expected discounted payoff is then one half.
Thus, A’s expected discounted payoff from deviating is

πA((1− δA)(1) + δA(0)) + πB(1/2),

which is no greater than one half, since δA ≥ 1/2. If A deviates to some y that is not
plurality preferred to xt, then the resulting partial history is labeled V-Eq(t). By 2(a), A

wins in period t with probability less than or equal to one half. Regardless of the winner, ht

is labeled P-Eq(t), and A’s expected discounted payoff is then one half. Thus, the deviation
is not profitable.

After a complete history labeled P-Absorb(x∗), according to the above strategies, both
parties choose x∗ and A wins with probability one half in every period, yielding an expected
discounted payoff of one half. If A deviates to a policy y such that y M∗ x∗, then the
resulting partial history is labeled ADev, and the argument proceeds as following a deviation
from a history labeled P-Eq(t − 1). If A deviates to some y that is not plurality preferred
to xt, then the resulting partial history is labeled V-Absorb(x∗). By 2(a), A wins in period
t with probability less than or equal to one half. Regardless of the winner, ht is labeled
P-Absorb(x∗), and A’s expected discounted payoff is again one half, so the deviation is not
profitable.

Next, take a complete history ht−1 labeled V-ADevWin. According to the strategies
specified above, party A wins with probability zero in period t and in all future periods. If
A deviates to y 6= x∗, then the resulting partial history is labeled ADevDev(y), where B

chooses x∗ and wins with probability one in all future periods. Thus, the deviation is not
profitable. After a complete history labeled V-BDevWin, A’s expected discounted payoff is
one, so A clearly has no profitable deviation.

Last, after a complete history ht−1 labeled P-DDev(x), according to the strategies spec-
ified above, both parties choose x forever, and A’s expected discounted payoff is one half.
If A deviates to y such that y M∗ x, then the resulting partial history is labeled ADev, and
the argument proceeds as following a deviation from a history labeled P-Eq(t − 1). Thus,
the deviation is not profitable. We conclude that party A, and likewise party B, has no
profitable one-shot deviations.

Thus, the above specification of strategies is a subgame perfect equilibrium, and it
clearly supports x. That it satisfies (OS) follows from two observations: the transition rule
for states only depends on past electoral outcomes; and strategies, in turn, only depend on
states. Finally, (WD) and (PS) are clear from the preceding arguments.

Theorem 3 Assume for every policy x there exists a policy x′ and a majority coalition C
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such that for all voters i ∈ C,

ui(x′)− ui(x)
ui − ui + ui(x′)− ui(x)

> δi.

Then there does not exist a subgame perfect equilibrium satisfying (OS) and (WD).

Proof : Consider a subgame perfect equilibrium σ satisfying (OS) and (WD), and suppose
that for every x ∈ X, there exists x′ ∈ X and majority coalition C ∈ M such that for
all voters i ∈ C, the inequality in the statement of the theorem is violated. Consider any
complete history ht, and let x = σB(ht). By supposition, there exists x′ and majority C

such that the inequality in the statement of the theorem holds for all i ∈ C. Then for all
i ∈ C, we have

(1− δi)ui(x′) + δiui > (1− δi)ui(xt) + δiui.

Given partial history (ht, x
′, x), (WD) implies that voter i ∈ C votes for party A if

(1− δi)ui(x′) + δivi(x′, x, 1) > (1− δi)ui(x) + δivi(x′, x, 0),

which is implied by the preceding inequality. Therefore, if party A locates at y = x′ after
complete history ht, the party wins. Since ht is arbitrary, we conclude that party A’s
expected discounted payoff in σ is equal to one. By a symmetric argument, party B’s
payoff is also one, a contradiction.

Theorem 4 Let δP < 1/2, and let x be a policy path. Assume there exists a period t, a
policy x′, and a majority coalition C such that for all voters i ∈ C,

ui(x′)− ui(xt)
ui − ui + ui(x′)− ui(xt)

> δi.

Then the path x is not supportable by a subgame perfect equilibrium satisfying (OS) and
(WD).

Proof : Consider a policy path x supported by a subgame perfect equilibrium satisfying
(OS) and (WD), and suppose that there exist t, x′, and C such that the inequality in the
statement of the theorem holds for all i ∈ C. Letting ht−1 denote the equilibrium path of
play in the first t−1 periods, we have, by assumption, that xt is the policy outcome in period
t with probability one. One of the parties, say A, must have an expected discounted payoff
starting from the beginning of period t of less than or equal to one half. Thus, because
δA < 1/2, party B wins in period t with some positive probability, and we conclude that
B’s platform is xt. We claim that A can deviate to x′ in period t and win with probability
one. Indeed, for all i ∈ C, the inequality

(1− δi)ui(x′) + δivi(x′, xt, 1) > (1− δi)ui(xt) + δivi(x′, xt, 0)

is implied by

(1− δi)ui(x′) + δiui > (1− δi)ui(xt) + δiui,
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which is equivalent to the inequality in the statement of the theorem. By (WD), therefore,
A wins in period t after deviating to x′. The expected discounted payoff from deviating is
at least (1−δA)(1)+δA(0) = 1−δA > 1/2, so the deviation is profitable, a contradiction.

Theorem 5 Assume that n is odd, that the utility functions ui are quadratic with distinct
ideal points, and that K 6= ∅. Let δi = δ < 1/2 for all voters, and let δP < 1/3 for the
parties. Then x is supportable by a subgame perfect equilibrium satisfying (OS), (WD), and
(PS) if and only if xt ∈ K for all t.

Proof : That x can be supported if xt ∈ K for all t follows from Proposition 3. Consider any
subgame perfect equilibrium, and let X∗ be the set of possible equilibrium policy outcomes:
x ∈ X∗ if and only if there is some complete history after which one party adopts x and
wins with positive probability. By our assumptions that n is odd and that voters have
quadratic utility functions, the core contains a single policy and this is the ideal point of
some voter, indexed k. By K 6= ∅, by the assumption of common discount factors, and by
(WD), Lemma 1 of Banks and Duggan (2006b) then implies that this core voter is “decisive”
after all histories. That is, A wins with probability one after partial history (ht, y, z) if

(1− δ)uk(y) + δvk(ht, y, z, 1) > (1− δ)uk(z) + δvk(ht, y, z, 0),

and B wins with probability one if the inequality is reversed. Furthermore, if equality holds
for the core voter, then, by the assumption of distinct ideal points, the above inequality and
the reverse inequality hold for equal numbers of voters. Thus, in this case, the parties win
with equal probabilities. It follows that, if x ∈ X∗, then there is a complete history after
which some party wins with probability at least one half by choosing x. Let

u = inf{uk(x) | x ∈ X∗},

which is finite, since utilities are bounded. Letting x̂k denote the core point (and the
ideal point of the core voter), suppose that u < uk(x̂k). By construction, there exist a
sequence {htm} of histories and a sequence {xm} of policies such that (i) for all m, some
party, say Pm, wins with probability at least one half by adopting xm after htm , and (ii)
uk(xm) → u. Assume without loss of generality that Pm = A along a subsequence. Indexing
that subsequence again by m, we have Pm = A for all m, i.e., B wins with probability less
than or equal to one half in the period following each complete history htm . We claim that,
for high enough m, B can win with probability one after htm by deviating to x̂k. If not,
then, because the core voter is decisive, we must have

(1− δ)uk(x̂k) + δvk(htm , xm, x̂k, 0) ≤ (1− δ)uk(xm) + δvk(htm , xm, x̂k, 1)

for some subsequence (also indexed by m). Since

u ≤ vk(htm , xm, x̂k, 0) and vk(htm , xm, x̂k, 1) ≤ uk(x̂k),

this implies

(1− δ)uk(x̂k) + δu ≤ (1− δ)uk(xm) + δuk(x̂k),
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or equivalently,

uk(x̂k)− uk(xm)
uk(x̂k)− u

≤ δ

1− δ
.

Taking limits, we have

lim
m→∞

uk(x̂k)− uk(xm)
uk(x̂k)− u

= 1,

but δ < 1/2 implies δ/(1− δ) < 1. This contradiction establishes the claim. Let htm be any
complete history such that B can win with probability one in the period following. The
party’s expected discounted payoff is less than or equal to (1−δP )(1/2)+δP (1) if it does not
deviate, while it’s expected discounted payoff from deviating is at least (1− δP )(1)+ δP (0).
Since δP < 1/3, the deviation is profitable, a contradiction. Therefore, u = uk(x̂k), and we
conclude that X∗ = {x̂k}.
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