
Collective Choice of Fixed-Size Subsets: Plurality Rule, Block

Voting, and Arrow’s Theorem∗

Mark Fey†

July 12, 2014

Abstract

Unlike most of our theoretical analyses, in the real world voters usually do not reveal their

entire ranking over the entire set of candidates. Often in fact, the only information revealed

by voters is the single candidate for whom the vote is cast. In such a restricted information

environment, Goodin and List (2006) offer a “conditional defense” of plurality rule and question

whether standard impossibility results can apply. In this paper, we show that a version of

Arrow’s Theorem can indeed be established in this environment. Our result deals with rules

in which each voter cast votes for k candidates and these votes are aggregated into a selection

of k candidates. Specifically, our main result is that the only such rules that satisfy both an

independence and unanimity condition are dictatorships.
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1 Introduction

A classic topic in the rich and detailed literature on social choice theory is how a group ought to

choose a single option out of several possibilities, such as electing a representative out of a group

of candidates. In the classic approach to this topic, dating back to Arrow’s foundational work

(Arrow, 1951), the preference orders of all the individuals in society are aggregated into a single

social preference. But it may be that a complete social ranking of the options is not needed; it may

suffice to identify the best option for the group. Thus an complementary approach is to focus on

social choice functions that take individual preference orders and assign a single social choice.

While these two approaches to understanding voting have been exhaustively studied in the

literature, voting systems in the real world rarely require voters to submit complete preference

orderings over the entire field of candidates. For example, take plurality rule, which is the most

commonly used majoritarian voting system. No matter how many candidates are on the ballot, each

voter votes for a single candidate and the candidate with the most votes is chosen. The voter does

not submit a full ranking of the candidates, rather the voter simply identifies a single candidates

as their choice. In this way, plurality rule and many other commonly used voting systems depart

from one important aspect of our theoretical models, namely that the system operates on complete

preference rankings of voters. Rather, most voting systems ask that voters mark their ballot with

a single choice or an unranked set of choices, and the system counts these votes and generates an

election result.

In the literature, the article by Goodin and List (2006) is the only one we are aware of that

addresses this point. The authors break a given voting system into two parts: the information about

preferences that voters reveal on the ballot and the aggregation of ballots into a social decision.

For example, for plurality rule, each voter indicates her top choice on the ballot (but does not

give any additional information about her ranking of the other choices) and then these ballots are

aggregated by simply choosing the alternative with the most votes. Goodin and List (2006) provide

a “conditional defense” of plurality rule: “If a society’s ballot procedure collects only a single vote

from each voter, then plurality rule . . . is the uniquely compelling aggregation procedure . . . in the

sense that it uniquely satisfies May’s well-known minimal conditions on democratic procedures . . . ”

(Goodin and List, 2006, emphasis in original)

This claim of superiority for plurality rule by Goodin and List is surprising because of the well-

known deficiencies of plurality in the standard framework of aggregating full preference orders.1

These deficiencies arise as a consequence of the fact that plurality rule fails to satisfy Independence

of Irrelevant Alternatives (IIA) in the standard framework. Goodin and List argue that this issue

is not a concern when voters only select a single alternative on the ballot because “Arrow’s theorem

. . . cannot be formulated in the present restricted informational environment, as conditions such as

1For example, in the standard framework plurality rule may fail to select a Condorcet winner and the selected
alternative can depend on the addition or deletion of other alternatives.
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. . . IIA . . . are not expressible here.” (Goodin and List, 2006, p. 945)

We show that this claim is incorrect by giving a formulation of IIA for the single-vote ballot

environment and proving a version of Arrow’s Theorem in this environment. We establish that in

the environment considered by Goodin and List, the only rule that satisfies our version of IIA and

a weak unanimity requirement is a dictatorship. This result casts serious doubt on the “conditional

defense” of plurality rule given in Goodin and List (2006). While it is true that plurality rule

satisfies the version of May’s conditions appropriate to a restricted informational environment, it

is seriously deficient as it fails to satisfy the appropriate version of IIA. This is analogous to the

place of majority rule in the standard framework: it is the unique rule to satisfy the appropriate

version of May’s conditions, but it is seriously deficient as it fails to be transitive in the standard

framework.

In fact, we broaden the scope of our analysis by considering not just single-vote ballots, but

rather all systems in which each voter chooses a set of alternatives of size k and the voting system

selects k winning alternatives. For example, in the block vote electoral system, voters cast as many

votes as there are available seats and the candidates with the most votes win, even if they have not

managed to secure a majority of the votes. Thus this system is an extension of plurality rule to

multimember districts.2 In our general theorem, we permit k to take a value of one, which shows

how we yield the environment of Goodin and List (2006) as a special case. To be precise, we refer

to any rule in which voters vote for k (unranked) candidates and the system aggregates these votes

into a set of k chosen candidates as a k-rule. Our main result is a version of Arrow’s Theorem that

states that a k-rule satisfies appropriate versions of IIA and Pareto if and only if it is a dictatorship.

Of course, the crucial ingredient to our argument is the form of IIA that we specify for the

restricted information environment. In the standard environment, IIA states that the social prefer-

ence between two alternatives should depend only on how individuals rank those two alternatives

and should thus be independent of the ranking of other alternatives. Likewise, in the restricted

information environment, our version of IIA states that whether or not an alternative is part of

the collective choice set should depend only on how individuals judge that specific alternative and

should thus be independent of the evaluations of other alternatives.

This way of specifying IIA has precedent in the social choice literature. Specifically, beginning

with Kasher and Rubinstein (1997), a number of papers have used this version of IIA in an axiomatic

approach to studying group identity (Samet and Schmeidler, 2003; Nicolas, 2007; Çengelci and

Sanver, 2010; Ju, 2010; Saporiti, 2012). Our version of Arrow’s Theorem also relates to the classic

work of Wilson (1975), who showed how the impossibility result of Arrow can be extended to the

aggregation of attributes other than preference orderings. It also relates to the more recent literature

on judgement aggregation and the impossibility results presented by List and Pettit (2002), Dietrich

2This electoral system is currently is use in some local elections in the United Kingdom; at the national level in
places such as Kuwait, Laos, Lebanon, Syria, Tonga and Tuvalu; and was previously used in Jordan, Mongolia, the
Philippines and Thailand.
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{a, b} {b, c} {a, b} {b, d}

Figure 1: Example with k = 2

(2007), and Dokow and Holzman (2010). Indeed, it may be possible to deduce a version of our result

from the deep theorem in Dokow and Holzman (2010) but at the cost of considerable complexity.

In contrast, the self-contained version given here clearly links our arguments to more traditional

proofs of Arrow’s Theorem.

2 Notation and Axioms

Consider a society N composed of n ≥ 3 individuals, so that N = {1, . . . , n}, and a set A composed

of m alternatives, with m ≥ 3. For k ∈ {1, . . . ,m− 1}, we let Ak be the collection of subsets of A

of size k.

Fix a value of k ∈ {1, . . . ,m − 1}. We think of k as the number of (distinct) votes cast by

each individual in society. More broadly, we can think of each individual as having a set of k

alternatives that is viewed as the best choice by that individual. Formally, for each individual i,

we assign Ki ∈ Ak to individual i, and we define a profile as K = (K1, . . . ,Kn). We refer to Ki

as individual i’s chosen set. Note that the k alternatives in Ki are not ranked relative to each

other—the only information available for each individual is which k alternatives are in Ki (and

which m− k alternatives are not).

We are interested in aggregating profiles into a single set of size k that is viewed as the collective

choice of society. Again, we can view this as the procedure to fill k seats in a multimember district,

for example. Formally, an k-set aggregation rule is a mapping F : Ak×· · ·×Ak → Ak, that assigns

to each profile K a set F (K) ∈ Ak. We refer to F (K) as the collective choice set.

As an example, suppose the set of alternatives is A = {a, b, c, d, e}, society is composed of

four individuals, and k = 2 so that each individual votes for two alternatives and the aggregation

rule selects two of the alternatives as the collective choice. In particular, suppose the profile

K = (K1, . . . ,Kn) is given by Figure 1. As illustrated in the figure, voter 1 chooses the two

alternatives a and b, voter 2 chooses the two alternatives b and c and so on. As an example of

a 2-set aggregation rule, consider the block voting rule in which the two alternatives chosen by

the most alternatives are selected. In the example depicted in Figure 1, this rule selects the two

alternatives a and b.

We next define the axiomatic properties that will be used in our analysis.3 First, an aggregation

rule satisfies IIA if each alternative is included as a collective choice purely as a function of how each

3For more discussion of these axioms, see Kasher and Rubinstein (1997) and Saporiti (2012).
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{a, c} {d, e} {a, b} {b, c}

Figure 2: Example for IIA

individual in society views that particular alternative. In other words, IIA requires that whether

or not the alternative is included in the collective choice is independent of how other alternatives

are viewed. Formally we state the following axiom:

IIA A k-set aggregation rule F satisfies Independence of Irrelevant Alternatives if, for all x ∈ A

and for all profiles (K1, . . . ,Kn) and (K ′1, . . . ,K
′
n), such that x ∈ Ki if and only if x ∈ K ′i for

all i ∈ N , we have x ∈ F (K1, . . . ,Kn) if and only if x ∈ F (K ′1, . . . ,K
′
n).

Note that with only two alternatives, the IIA axiom is always trivially satisfied. Thus, we consider

situations in which there are three or more alternatives.

As an example of the IIA axiom, suppose that for the profile given in Figure 1 the collective

choice is the set {a, b} and now consider the profile given in Figure 2. As alternative a is included in

the chosen set in this profile by exactly the same individuals as in Figure 1, IIA requires that a be

included in the collective choice set of the profile in Figure 2. Note however, that for an alternative

such as b which is included in the chosen set by different individuals in the two profiles, IIA says

nothing about whether b ought to be in the collective choice set of the second profile.

Next, an aggregation rule satisfies Pareto if unanimous agreement about the status of an al-

ternative generates the same status in the collective choice. Specifically, if every individual either

includes or excludes some alternative in their chosen set, then so must the collective choice set.

Formally, we have:

Pareto A k-set aggregation rule F satisfies Pareto if, for all x ∈ A, and for all profiles (K1, . . . ,Kn)

such that x ∈ Ki for all i ∈ N , we have x ∈ F (K1, . . . ,Kn), and for all profiles (K1, . . . ,Kn)

such that x /∈ Ki for all i ∈ N , we have x /∈ F (K1, . . . ,Kn).

Saporiti (2012) defines a weaker version of this axiom as follows.

Weak Pareto A k-set aggregation rule F satisfies Pareto if, for all x ∈ A, and all profiles

(K1, . . . ,Kn), if x ∈ Ki for all i ∈ N , we have x ∈ F (K1, . . . ,Kn).

Thus, Weak Pareto only requires that an alternative be included in the collective choice if there is

unanimous agreement about this alternative. It places no requirement on how unanimous agreement

on exclusion is handled by the aggregation rule. As we prove in the next section, Weak Pareto and

IIA together implies Pareto.
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As an example of the two versions of Pareto, again consider the profile given in Figure 1. As

alternative b is present in every individual’s chosen set and alternative e is present in nobody’s

chosen set, Pareto requires that the collective choice set for this profile include b and exclude e.

Weak Pareto, on the other hand, only requires that b be included in the collective choice set, but

places no restriction on whether e is included or excluded.

Finally, we define a particular aggregation rule, known as dictatorship. Formally, an aggregation

rule F is a dictatorship if there exists an individual i ∈ N such that F (K1, . . . ,Kn) = Ki for all

profiles (K1, . . . ,Kn). That is, an individual is a dictator if the collective choice set is always

identical to the individual’s chosen set.

3 Results

In this section we prove our main result. Our approach mirrors the standard proof of Arrow’s

Theorem and thus illustrates the connection between impossibility in the standard framework and

our impossibility result in the restricted information environment. We proceed by establishing a

sequence of lemmas and conclude by stating our main theorem and show how it follows from the

lemmas.

Our first lemma is a perhaps surprising consequence of two of our axioms. It states that,

assuming IIA and Weak Pareto, the collective choice set for a profile is always equal to some

individual’s chosen set.4

Lemma 1. Suppose F is a k-set aggregation rule with k ∈ {1, . . . ,m − 1} that satisfies IIA and

Weak Pareto. Then for all profiles (K1, . . . ,Kn), F (K1, . . . ,Kn) = Ki for some i ∈ N .

Proof. Suppose F satisfies IIA and Weak Pareto, but there exists some profile (K1, . . . ,Kn) such

that F (K1, . . . ,Kn) 6= Ki for all i ∈ N . Then for each i ∈ N , there exists an alternative x̂i ∈ Ki

such that x̂i 6= F (K1, . . . ,Kn). Construct a new profile (K ′1, . . . ,K
′
n) as follows. For each i ∈ N , if

x̂1 ∈ Ki then K ′i = Ki and if x̂1 /∈ Ki then we replace x̂i with x̂1 in K ′i. That is, if x̂1 /∈ Ki then

K ′i = {x̂1} ∪ (Ki \ {x̂i}). By IIA, all alternatives in F (K1, . . . ,Kn) are also in F (K ′1, . . . ,K
′
n) and

by Weak Pareto, x̂1 ∈ F (K ′1, . . . ,K
′
n). But then F (K ′1, . . . ,K

′
n) contains at least k+ 1 alternatives,

which is impossible. This proves the lemma.

It should be emphasized that this lemma does not imply that the rule is a dictatorship because,

while the collective choice set must be some individual’s chosen set, two different profiles could

have collective choice sets that correspond to two different individuals’ chosen sets.

An immediate consequence of this lemma is that if x /∈ Ki for all i ∈ N , then x /∈ F (K1, . . . ,Kn).

We thus have the following corollary:

4This is similar to the axiom of Individual Support discussed by Fey (2004).
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Corollary 1. If a k-set aggregation rule with k ∈ {1, . . . ,m − 1} satisfies IIA and Weak Pareto,

then it satisfies Pareto.

We can make our work somewhat easier by noting that for k ∈ {1, . . . ,m− 1}, the problem of

aggregating n individual sets of size k into a collective set of size k consistent with IIA and Pareto

has a natural dual problem of aggregating n sets of size m − k into a collective set of size m − k

consistent with the two axioms. That is, the problem of choosing a collective set of size k as a

function of individual sets of size k is equivalent to specifying a set of m−k alternatives that should

not be the collective choice as a function of the m − k alternatives that each individual does not

choose.

We state this in the next lemma:

Lemma 2. Suppose k ∈ {1, . . . ,m− 1}. A k-set aggregation rule F satisfies IIA and Weak Pareto

if and only if the m−k-set aggregation rule F̄ given by F̄ (K̄1, . . . , K̄n) = A\F (A\ K̄1, . . . , A\ K̄n)

satisfies IIA and Weak Pareto.

Proof. Suppose a k-set aggregation rule F satisfies IIA and Weak Pareto. Then by Corollary 1, it

satisfies Pareto. Define a m−k-set aggregation rule F̄ by F̄ (K̄1, . . . , K̄n) = A\F (A\K̄1, . . . , A\K̄n).

Suppose there is x ∈ A such that x ∈ K̄i for all i ∈ N . Then x /∈ A \ K̄i for all i ∈ N and so by

Pareto, x /∈ F (A \ K̄1, . . . , A \ K̄n). But then x ∈ F̄ (K̄1, . . . , K̄n) and F̄ satisfies Weak Pareto. A

similar argument show that F̄ satisfies IIA.

A consequence of this lemma is that, without loss of generality, we can take k ≤ m/2 because

for all k > m/2, we can instead work with the dual problem with m − k < m/2. Thus, from this

point forward we suppose that k ≤ m/2.

We say a group G ⊆ N is semi-decisive for some K ∈ Ak if there is a profile (K1, . . . ,Kn)

satisfying Ki = K for all i ∈ G and Ki ∩K = ∅ for all i /∈ G such that F (K1, . . . ,Kn) = K. That

is, when a group is semi-decisive, if all members of the group have identical chosen sets and the

chosen sets of all individuals outside the group have no alternatives in common with the chosen set

of the group members, then the group as acts as a group dictator—the collective choice set is equal

to the common chosen set of the group members. Note that if a a group G ⊆ N is semi-decisive for

some K ∈ Ak, then by IIA, F (K1, . . . ,Kn) = K for every profile (K1, . . . ,Kn) satisfying Ki = K

for all i ∈ G and Ki ∩K = ∅ for all i /∈ G.

In a similar fashion, we say a group G ⊆ N is decisive if, for every K ∈ Ak and for every profile

(K1, . . . ,Kn) satisfying Ki = K for all i ∈ G, F (K1, . . . ,Kn) = K. In other words, if a group is

decisive, then whenever all members of the group have identical chosen sets, the group as acts as a

group dictator—the collective choice set is equal to the common chosen set of the group members.

Clearly if F satisfies Weak Pareto, then the group G = N consisting of the entire society is decisive.
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These definitions mirror those made in the classic proof of Arrow’s Theorem. Likewise, the next

two lemmas mirror Sen’s “field expansion lemma.” The first of these two lemmas states that if a

group is semi-decisive for some chosen set, it is semi-decisive for all chosen sets.

Lemma 3. Suppose F is a k-set aggregation rule with k ∈ {1, . . . ,m − 1} that satisfies IIA and

Weak Pareto. Then if there exists some K̂ ∈ Ak such that a group G ⊆ N is semi-decisive for K̂,

then G is semi-decisive for every K ∈ Ak.

Proof. Suppose F satisfies IIA and Weak Pareto and suppose there exists some K̂ ∈ Ak such

that a group G is semi-decisive for K̂. Recall that by IIA, F (K1, . . . ,Kn) = K̂ for every profile

(K1, . . . ,Kn) satisfying Ki = K̂ for all i ∈ G and Ki ∩ K̂ = ∅ for all i /∈ G.

We consider two cases. The first case is k = 1. In this case, K̂ = {x̂} for some x̂ ∈ A.

Now pick y, z ∈ A such that x̂, y, and z are distinct. This is possible because m ≥ 3. Define

the profile (K1, . . . ,Kn) by Ki = {y} for all i ∈ G and Ki 6= {y} for all i /∈ G. In order to

show that F (K1, . . . ,Kn) = {y}, suppose not. Then by IIA, the profile (K ′1, . . . ,K
′
n) defined by

K ′i = {y} for all i ∈ G and K ′i = {z} for all i /∈ G must also have F (K ′1, . . . ,K
′
n) 6= {y}. But then

Lemma 1 requires that F (K ′1, . . . ,K
′
n) = {z}. Finally, consider the profile (K ′′1 , . . . ,K

′′
n) defined

by K ′′i = {x̂} for all i ∈ G and K ′′i = {z} for all i /∈ G. Comparing this profile to the profile

(K ′1, . . . ,K
′
n), IIA requires that F (K ′′1 , . . . ,K

′′
n) = {z}. But as G is semi-decisive for {x̂}, we must

have F (K ′′1 , . . . ,K
′′
n) = {x̂}. This contradiction shows that G is semi-decisive for every singleton

{x} in A.

The second case we consider is k ≥ 2. We first show that G is semi-decisive for every K ∈ Ak

such that K∩K̂ 6= ∅. Let x̂ ∈ K∩K̂ and let the profile (K ′1, . . . ,K
′
n) satisfy K ′i = K for all i ∈ G and

K ′i ∩K = ∅ for all i /∈ G. Therefore x̂ ∈ K ′i if and only if i ∈ G and so by IIA, x̂ ∈ F (K ′1, . . . ,K
′
n).

Thus it follows from Lemma 1 that F (K ′1, . . . ,K
′
n) = K, and so G is semi-decisive for K.

Next we show that G is semi-decisive for every K ∈ Ak. Let the profile (K ′1, . . . ,K
′
n) satisfy

K ′i = K for all i ∈ G and K ′i∩K = ∅ for all i /∈ G. Pick arbitrary alternatives x ∈ K and x̂ ∈ K̂ and

pick K ′′ such that {x, x̂} ⊆ K ′′. This is possible because k ≥ 2. As K ′′ ∩ K̂ 6= ∅, G is semi-decisive

for K ′′. It follows that F (K ′′1 , . . . ,K
′′
n) = K ′′ for a profile (K ′′1 , . . . ,K

′′
n) that satisfies K ′′i = K ′′ for

all i ∈ G and K ′′i ∩ K ′′ = ∅ for all i /∈ G. This means that x ∈ F (K ′′1 , . . . ,K
′′
n), so it follows by

IIA, we must have x ∈ (K ′1, . . . ,K
′
n). Finally, it follows from Lemma 1 that F (K ′1, . . . ,K

′
n) = K.

Therefore G is semi-decisive for every K.

The second of these two lemmas states that if a group is semi-decisive for all chosen sets, then

it is decisive.

Lemma 4. Suppose F is a k-set aggregation rule with k ∈ {1, . . . ,m − 1} that satisfies IIA and

Weak Pareto. Then if a group G ⊆ N is semi-decisive for every K ∈ Ak, then G is decisive.

7



Proof. Suppose F satisfies IIA and Weak Pareto and suppose G is semi-decisive for every K ∈ Ak.

By Lemma 2, we can take k ≤ m/2. To show that G is decisive, suppose not. That is, suppose

that for some profile (K1, . . . ,Kn) with Ki = K for all i ∈ G we have F (K1, . . . ,Kn) 6= K. By

Lemma 1, there exists j ∈ N such that F (K1, . . . ,Kn) = Kj . Therefore, Kj 6= K and so j /∈ G.

This implies there exists x̄ ∈ K \Kj and xj ∈ Kj \K. Obviously, x̄ 6= xj .

Construct a new profile (K ′1, . . . ,K
′
n) as follows. For individual j, K ′j = Kj , and for all i ∈ G,

K ′i = Ki. For all i ∈ N \ (G ∪ {j}), we require that xj ∈ K ′i if and only xj ∈ Ki be satisfied and

otherwise all remaining alternatives in K ′i can be chosen arbitrarily from A \ ({xj , x̄). As k ≤ m/2,

this is always possible. As xj ∈ K ′i if and only xj ∈ Ki for all i ∈ N and xj ∈ F (K1, . . . ,Kn), then

by IIA, xj ∈ F (K ′1, . . . ,K
′
n). But as G ⊆ N is semi-decisive for K, there is a profile (K ′′1 , . . . ,K

′′
n)

satisfying K ′′i = K for all i ∈ G and K ′′i ∩ K = ∅ for all i /∈ G such that F (K ′′1 , . . . ,K
′′
n) = K.

As x̄ ∈ K ′i if and only if i ∈ G, then by IIA applied to profiles (K ′1, . . . ,K
′
n) and (K ′′1 , . . . ,K

′′
n),

x̄ ∈ F (K ′1, . . . ,K
′
n). Thus it follows from Lemma 1 that F (K ′1, . . . ,K

′
n) = K, but this contradicts

xj ∈ F (K ′1, . . . ,K
′
n). We conclude that for every profile (K1, . . . ,Kn) satisfying Ki = K for all

i ∈ G we must have F (K1, . . . ,Kn) = K.

Combining this lemma with Lemma 3 allows us to conclude that if a group is semi-decisive for

some chosen set, then it is decisive. Our next lemma mirrors the “group contraction lemma” of

Sen. It states that a decisive group must contain a strictly smaller decisive group.

Lemma 5. Suppose F is a k-set aggregation rule with k ∈ {1, . . . ,m − 1} that satisfies IIA and

Weak Pareto. If a group G with #G ≥ 2 is decisive, then a non-empty proper subset of G is

decisive.

Proof. Suppose F satisfies IIA and Weak Pareto and suppose G with #G ≥ 2 is decisive. By

Lemma 2, we can take k ≤ m/2. Partition G into two non-empty groups G1 and G2. Pick K1 ∈ Ak

and K2 ∈ Ak that differ by one element. That is, K1 \K2 = {x1} and K2 \K1 = {x2}. Let the

profile (K1, . . . ,Kn) satisfy Ki = K1 for all i ∈ G1, Ki = K2 for all i ∈ G2, and Ki ∩ {x1, x2} = ∅
for all i /∈ G. This is possible because k ≤ m/2. By Lemma 1, F (K1, . . . ,Kn) = Ki for some

i ∈ N . We first establish that F (K1, . . . ,Kn) equals K1 or K2. To see this, suppose not. That

is, suppose F (K1, . . . ,Kn) = Kj for some j /∈ G. As Kj 6= K1 by construction, there exists

xj ∈ Kj \K1. But consider a new profile (K ′1, . . . ,K
′
n) that satisfies K ′i = K1 for all i ∈ G, and

K ′i = Ki for all i /∈ G. As xj ∈ Ki if and only if xj ∈ K ′i and xj ∈ F (K1, . . . ,Kn), by IIA we have

xj ∈ F (K ′1, . . . ,K
′
n). However, as G is decisive, F (K1, . . . ,Kn) = K1, so xj /∈ F (K ′1, . . . ,K

′
n). This

contradiction establishes that F (K1, . . . ,Kn) ∈ {K1,K2}.
To continue, assume without loss of generality that F (K1, . . . ,Kn) = K1. We will show that

this implies that G1 is decisive. Consider a profile (K ′′1 , . . . ,K
′′
n) satisfying K ′′i = K1 for all i ∈ G1

and K ′′i ∩ K1 = ∅ for all i /∈ G1. As x1 ∈ K ′′1 if and only if x1 ∈ K1, it follows from IIA that
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x1 ∈ F (K ′′1 , . . . ,K
′′
n). Then it follows from Lemma 1 that F (K ′′1 , . . . ,K

′′
n) = K1 and therefore G1

is semi-decisive for K1. Applying Lemmas 3 and 4, G1 is decisive. This proves the lemma.

We are now ready to state and prove our version of Arrow’s Theorem for k-set aggregation

rules. This is our main result.

Theorem 1. A k-set aggregation rule with k ∈ {1, . . . ,m − 1} satisfies IIA and Weak Pareto if

and only if it is a dictatorship.

Proof. Clearly if F is a dictatorship, then F satisfies IIA and Weak Pareto. For the converse,

suppose F satisfies IIA and Weak Pareto. By Weak Pareto, N is decisive. Therefore there exists

a decisive group of minimal size, call it G∗. If #G∗ ≥ 2, then by Lemma 5 there is a non-empty

proper subset of G∗ which is decisive. But this contradicts the fact that G∗ is a decisive set of

minimal size, so #G∗ = 1. We conclude that F is a dictatorship.

4 Conclusion

In this paper we have considered voting systems in which each voters casts k votes in order to fill k

seats. Examples of such systems in the real world include plurality, in which case k = 1, and block

voting, in which case k > 1. We have shown that there is no such system that satisfies IIA and

Pareto, other than dictatorship. In particular, plurality rule must violate our version of IIA, just

as it does in the standard environment.

There are several other electoral systems that our framework does not cover. As described by

Cox (1990), limited vote systems are similar to block voting systems except voters have fewer votes

than there are seats to be filled. Cumulative voting describes systems in which may cast more than

one vote for a single candidate. Finally, some block voting systems allow voters to partially abstain

and not use all of their available votes. We suspect that impossibility results similar to Theorem 1

will hold in these systems as well, but we leave such questions to future work.
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