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Abstract

In the multi-dimensional spatial model of elections with two policy-

motivated candidates, we prove that the candidates must adopt the

same policy platform in equilibrium. Moreover, when the number of

voters is odd, if the gradients of the candidates’ utility functions point

in different directions, then they must locate at some voter’s ideal

point and a strong symmetry condition must be satisfied: in partic-

ular, it must be possible to pair some voters so that their gradients

point in exactly opposite directions. If the number of dimensions is

more than two, then our condition is knife-edge. When the number

of voters is even, the situation is worse: such equilibria never exist,

regardless of the dimensionality of the policy space.

JEL Classification: D72, C72

Keywords: office-motivation, policy-motivation, spatial model of vot-

ing, probabilistic voting



1 Introduction

What policy positions should candidates adopt in running for office? Will

they choose identical positions? Or will stable choices even exist? These

questions have been the central focus of the literature on spatial modeling

that dates back to the famous work of Downs (1957). Downs’ assumption

that candidates care about winning and not about policies is standard in this

literature. With such office-motivated candidates, the main findings of the

spatial model of voting are well known. If the policy space is one dimensional,

then the Median Voter Theorem holds: candidates choose identical positions

at the median of the voters’ ideal points (Downs, 1957; Black, 1958). On the

other hand, if the issue space is multidimensional, then there is almost always

no such unbeatable position, or “core point,” and therefore equilibria almost

never exist (Plott, 1967). In this paper, we reconsider the basic questions

posed by spatial theory under the alternative assumption that candidates are

policy-motivated.

A central paper in the literature that addresses these issues is Calvert

(1985). Building on work by Wittman (1977, 1983), Calvert considers policy-

motivated candidates and shows that in one dimension, convergence to the

median still holds, and more generally (in any number of dimensions), if a

core point exists, then the unique electoral equilibrium is for both candidates

to locate at the core point. However, the assumption that a core point exists

severely restricts the applicability of Calvert’s result. As is well-known, the

existence of a core point entails a symmetry condition on voter preferences

that is extremely demanding in two or more dimensions: Plott (1967) shows

that a core point must be the ideal point of some voter, and the gradients

of the other voters’ utility functions must be paired so that, for every voter

with a gradient pointing in one direction, there is exactly one voter whose

gradient points in the opposite direction.1 As a consequence, core points

1See also McKelvey and Schofield (1987).
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almost always fail to exist, and when one does exist, it will be vulnerable to

even slight variations in preferences.2 Calvert’s result also assumes that vot-

ers have Euclidean preferences (circular indifference curves). He conjectures

(pp. 78–79) that, if the assumption of Euclidean preferences is weakened,

then other types of equilibria, in which candidates do not locate at the core

point, may be created. The questions of existence and location of equilibrium

points with policy-motivated candidates are left open in the general cases of

non-Euclidean preferences and an empty core. We provide answers to these

questions.

Under office-motivation, candidates must locate at core points in equilib-

rium: if one candidate were to locate at a beatable position, the other would

move to exploit that opportunity. Thus, in the absence of a core point, there

will be no equilibrium of the game between the candidates. Why might the

assumption of policy-motivation yield different answers for the multidimen-

sional case? The answer lies in the observation that a majority-preferred

position may have undesirable policy implications for a candidate, mitigat-

ing the incentive to locate there. In other words, a change to a winning

position that is beneficial to an office-motivated candidate, by definition,

may not be so to a policy-motivated candidate if the winning position is a

less desirable policy. Therefore, a model with policy-motivated candidates

offers fewer potential profitable deviations and this suggests that we may

find equilibria where none were present under office-motivation. We show

that this is true only to a very limited extent. In particular, the symmetry

conditions required for existence are weaker than Plott’s. They are still de-

manding enough that equilibria will usually fail to exist in high-dimensional

policy spaces, but now “high” means at least three dimensions, rather than

two.

Our main results develop necessary conditions that must be satisfied by

2See Rubinstein (1979); Schofield (1983); Cox (1984); Le Breton (1987). When the
number of voters is even, the results are almost as negative: existence of core points may
be robust to variations in preferences in two dimensions, but not in more.
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the equilibrium platforms of the candidates. We first show that in any equilib-

rium with neither candidate at her own ideal point, the candidates must take

identical policy positions. This phenomenon is called “policy coincidence” or

“policy convergence.” We next consider the smaller set of equilibria in which

the candidates’ gradients point in different directions, so that the candidates

have distinct policy preferences near the equilibrium point. Theorem 2 gives

necessary conditions for existence of an equilibrium in this case. Specifically,

in equilibrium, the candidates must locate at the ideal point of some voter,

and a type of symmetry on the voters’ gradients must hold: for every voter

whose gradient lies between the candidates’ gradients, there must be exactly

one voter whose gradient points in exactly the opposite direction.

Somewhat surprisingly, the restrictiveness of this symmetry condition

turns out to depend on the dimensionality of the policy space. Indeed, for

a two-dimensional issue space, we give a simple sufficient condition under

which there exists an electoral equilibrium with policy-motivated candidates

that is robust to small changes in the preferences of voters and candidates,

even though the core may be empty. Thus, in two dimensions, the negative

conclusions of Plott (1967) for office-motivated candidates do not carry over

with full force. For three or more dimensions, however, we show in Theorem 3

that the existence of equilibria is knife-edge. In particular, the following sym-

metry condition is necessary: for every voter whose gradient does not lie on

the plane spanned by the candidates’ gradients, there must be exactly one

voter whose gradient points in the opposite direction. In other words, if

we remove the voters whose gradients lie on that plane, then the equilibrium

platform must be a core point of the modified majority voting game. Because

the plane is a lower-dimensional subspace, we would not expect it to contain

the gradients of all voters. Typically, therefore, we must have some pairs of

voters with diametrically opposed gradients, and this suggests that electoral

equilibria will be rare and that, when existence does obtain, it will be vulner-

able to even slight variations of voter or candidate preferences. Thus, with
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three or more dimensions, we conclude that equilibria with policy-motivated

candidates almost never exist.

Theorem 4 takes up the case of an even number of voters and shows that

existence is not even knife-edge: equilibria of the type we consider do not ever

exist. Thus, the result in this case is even stronger than the result with an

odd number of voters. This finding is worth noting because an even number

of voters is the “optimistic” case in models of office-motivated candidates:

core points and thus equilibria may be robust. But with policy-motivated

candidates, these observations no longer hold.

The results we have discussed are proved in the framework of pure policy-

motivation and deterministic voters, which is of course a stylized view of real

elections. We focus on this polar case for several reasons. First, as our

results are mainly negative, we seek to strengthen them by considering an

environment amenable to existence, in contrast to the “mixed motivation”

case: when office-motivation has positive weight in the candidates’ payoffs,

a significant (even if small) additional discontinuity is introduced into the

game, and we then run the risk that nonexistence is an artifact of this dis-

continuity. Second, taking our model as a benchmark, we are able to show

that our negative conclusions carry over even if we introduce a small amount

of probabilistic voting into the model, smoothing out the payoff functions

of the candidates, and even if we allow for a small benefit of winning the

election (which may take a quite arbitrary form). Thus, though our main

results are stated in terms of a particular model, they inform us about a

“neighborhood” of models containing it. As a byproduct of this robustness

result, we conclude that nonexistence of equilibrium in our model is not the

product of discontinuities in candidate payoffs, but rather is the product

of nonconvexities, which are unavoidable when candidates are well-informed

about the behavior of voters. Last, our focus facilitates comparison to the

literature on electoral competition.

The assumption of policy-motivation has been used in a significant num-
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ber of applications. Surveys of this literature include Wittman (1990), Shep-

sle (1991), and Osborne (1995). Another line of literature combines policy-

motivation with uncertainty, usually via probabilistic voting (Wittman, 1983;

Calvert, 1985). These papers show that policy coincidence breaks down as

soon as uncertainty about voting behavior is introduced, and that the ex-

tent of the divergence of the candidates’ platforms varies continuously with

the amount of policy-motivation added to the objective functions of office-

motivated candidates. Our robustness results for probabilistic voting point

to an issue that has gone somewhat unnoticed in this literature: equilibria

need not exist in these models; indeed, when voting is close to deterministic

and weight on office is small, equilibria will almost never exist. Finally, in

the literature on “citizen candidates,” candidates are assumed, along with

other voters, to possess policy preferences.3 But these models differ from

the spatial model of elections in that candidates cannot commit to policies

prior to an election; rather, office holders choose policies optimally given

their preferences and, in some models, given the effects of policy choices on

future electoral prospects. In contrast, our paper contributes to the under-

standing of the effects of policy motivation by maintaining the other basic

assumptions, commitment among them, of the spatial model.

The remainder of the paper is organized as follows. In Section 2, we

present the model of elections with policy-motivated candidates. In Section

3, we give two-dimensional examples of robust equilibria in the model with

policy-motivated candidates, and we give a simple sufficient condition that

generalizes the examples. In Section 4, we state our results on necessary

conditions for existence of equilibria of two types: equilibria in which neither

candidate locates at her ideal point, and the subset of equilibria in which the

candidates’ gradients point in different directions. In Section 5, we give con-

ditions under which there are no other equilibria. In Section 6, we establish

3See Osborne and Slivinski (1996); Besley and Coate (1997, 1998); Duggan (2000);
Banks and Duggan (2000).
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the robustness of our negative conclusions, showing that equilibrium nonexis-

tence extends if a small amount of probabilistic voting and office-motivation

are introduced. In Section 7, we briefly consider a simple model of mixed

motives, where candidates put a fixed weight on holding office, in addition

to policy concerns. The final section concludes, and the appendix contains

proofs of our results.

2 The Model

We consider two candidates, A and B, competing for the votes of an elec-

torate, N , containing a number n of voters. The candidates simultaneously

choose policy platforms from X, a nonempty, convex subset of d-dimensional

Euclidean space, R
d.4 We denote candidate C’s platform choice by xC . Each

voter i has a preference relation on X represented by a strictly quasi-concave,

differentiable utility function ui : X → R, with ideal point x̃i that uniquely

satisfies∇ui(x) = 0. We assume that no two voters have the same ideal point:

∇ui(x) = ∇uj(x) = 0 for no x, i, and j 6= i. We say voter i’s preferences are

Euclidean if i has an ideal point x̃i and, for some strictly decreasing function

f : R+ → R, ui(x) = f(||x− x̃i||), i.e., voter i has circular indifference curves.

We use the notation R for weak majority preference, P for strict prefer-

ence, and I for indifference: xRy if and only if ui(x) ≥ ui(y) for at least half

of the voters; xPy if and only if ui(x) > ui(y) for more than half of the voters

(i.e., not yRx); and xIy if and only if xRy and yRx. We denote the number

of voters who strictly prefer x to y by nA(x, y), the number who strictly pre-

fer y to x by nB(x, y), and the number who are indifferent by nI(x, y). Thus,

xPy if and only if nA(x, y) > n/2, for example. In the appendix, we state

a lemma on the “star-shapedness” of majority preferences: if xRy, then any

point between x and y will be weakly majority-preferred to y, strictly so if

4We use the notation C for an arbitrary candidate; i, j, k, etc., for an arbitrary voter;
and x, y, z, etc., for arbitrary policies.
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the number of voters is odd.

We define the core as the set of platforms x weakly majority-preferred to

all other platforms: for all y ∈ X, xRy. If the number of voters is odd, then

a standard result under our assumptions is that the core, when nonempty,

consists of a single point, say x∗, and that, for all y 6= x∗, x∗Py. Moreover,

x∗ is the ideal point of some voter, say i∗. In case all voters have Euclidean

preferences, it is known that the majority preference relation coincides with

the preferences of the “core voter” i∗, i.e., xRy if and only if ui∗(x) ≥ ui∗(y)

(Davis et al., 1972). Thus, in that case, the majority weak preference relation

is complete and transitive, with circular indifference curves. None of these

conclusions holds generally when n is even.

We assume each candidate C has a preference relation on X represented

by a strictly quasi-concave, differentiable utility function uC : X → R, with

ideal point x̃C that uniquely satisfies ∇uC(x) = 0. We assume that the

candidates are policy-motivated, which means that a candidate may face a

tradeoff between desirable and successful policy platforms. As is standard, we

assume that candidates evaluate this tradeoff using expected utility.5 Specif-

ically, when A chooses platform x and B chooses platform y, A’s expected

utility is

UA(x, y) = P (x, y) uA(x) + (1− P (x, y)) uA(y) (1)

for candidate A (and similarly for B), where P (x, y) is the probability that

candidate A wins. With deterministic voting, P (x, y) is equal to 1 if xPy

and 0 if yPx. When xIy, its value is normally specified by some assumptions

on how ties are broken and how voters make choices when indifferent, such

as flipping fair coins.

Because our equilibrium existence results are ultimately negative, it is

important to maintain a degree of generality with respect to the behavior

of indifferent voters: otherwise, we would leave open the possibility that our

5See Duggan and Fey (2001) for a version of this model with more general assumptions
on candidate preferences that do not impose the expected utility form.
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conclusions were an artifact of our assumptions on voter behavior. Therefore,

instead of choosing a particular specification of tie-breaking probabilities, we

allow for quite arbitrary voting behavior when voters are indifferent.6 Our

assumptions are formalized in the following condition.

(A1) P (x, y) = 1 if xPy; P (x, y) = 0 if yPx; and 0 < P (x, y) < 1 if xIy.

Essentially, we require of indifferent voters only that they vote for each candi-

date with positive probability. These probabilities may vary arbitrarily with

the particular platforms over which the voter is indifferent.7 When n is even,

majority indifference may hold even if no voters are themselves indifferent,

so we impose an additional condition on the form of P (x, y) in this case.

(A2) If n is even and nA(x, y) = nB(x, y) = n/2 and nA(z, y) = nB(z, y) =

n/2, then P (x, y) = P (z, y). If n is even and nB(x, y) = nB(z, y) = n/2

and nA(x, y) < nA(z, y), then P (x, y) < P (z, y) (and likewise for B).

This assumption requires two things. First, all ties in which there are no

indifferent voters are broken the same way. Second, if exactly half of the

voters strictly prefer B’s position, then the chance that A wins is increasing

in the number of voters with a strict preference for A.8

The game between the candidates is thus defined by the strategy sets

X for each candidate and the payoff functions given by equation (1). We

use (pure strategy) Nash equilibrium as our equilibrium concept.9 We say

that an equilibrium (xA, xB) is a nonsatiated equilibrium if xA and xB are

interior to X and neither candidate’s chosen platform is at her ideal point:

6This approach is similar to that of Simon and Zame (1990).
7In fact, we even allow indifferent voters to abstain from voting with any probability

(possibly one), as long as the winner in case of a tie is determined randomly with each
candidate receiving positive probability.

8Again, see Duggan and Fey (2001) for a version of this model with more general
assumptions on candidate preferences in the case of ties.

9In other words, (xA, xB) is an equilibrium if neither candidate C can deviate to a
different platform to produce a preferred pair: there does not exist x′

A
∈ X such that

UA(x
′

A
, xB) > UA(xA, xB) (and likewise for B).
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∇uA(xA) 6= 0 and ∇uB(xB) 6= 0. We say an equilibrium (xA, xB) is a non-

aligned equilibrium if the platforms are interior and the candidates’ gradients

do not point in the same direction: there do not exist α, β ≥ 0, at least

one nonzero, such that α∇uA(xA) = β∇uB(xB). Note that every nonaligned

equilibrium is nonsatiated.10

3 Sufficient Conditions

We begin by illustrating that, unlike the case of office-motivated candidates,

equilibria can exist in the absence of a core point. In Figure 1, the ideal

points of three voters are arranged in a triangle, and we give the voters and

candidates Euclidean preferences. It is a (nonaligned) equilibrium for the

candidates to locate at voter 3’s ideal point in this example, because the

weakly majority-preferred platforms are those weakly preferred by voters 1

and 2. This set, being the intersection of two circles, is sufficiently kinked —

so that no such platforms are preferred by either candidate — as long as 1’s

and 2’s ideal points are far enough apart. Obviously, as this configuration

of voter ideal points has no majority core, no such equilibrium exists in

the case of office-motivated candidates. Moreover, it is easy to see that this

equilibrium is also robust to small variations in the preferences of the players.

Policy motivation can have a substantial effect even when the core is

nonempty. In this case, when candidates are office-motivated, there can be no

equilibria other than at the core point. This is not true when candidates are

policy-motivated, as illustrated in Figure 2. In this example, we give voters 1

and 3 Euclidean preferences but, as evidenced by voter 2’s indifference curve,

we give that voter non-Euclidean preferences. Voter 2’s ideal point is the core

point, but it is a nonaligned equilibrium for both candidates to locate at voter

3’s ideal point: none of the platforms weakly majority-preferred to x̃3, in the

10To see this, suppose (xA, xB) is an equilibrium with ∇uA(xA) = 0. Then choosing
α > 0 and β = 0 implies α∇uA(xA) = β∇uB(xB). So (xA, xB) is not a nonaligned
equilibrium.
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Figure 1: A nonaligned equilibrium with no core
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Figure 2: A nonaligned equilibrium not at the core

region described by hash marks, are preferred to x̃3 by either candidate.

Once again, note that the equilibrium in this example is robust, in the sense

that it survives small enough variations in the gradients of the voters and

candidates. The non-Euclidean preferences of voter 2 are necessary in this

example, as Calvert (1985) shows that when voters’ preferences are Euclidean

and the core is nonempty, there can be no nonaligned equilibria other than

the core. Thus, Figure 2 confirms Calvert’s conjecture that equilibria can be

supported at points other than the core when preferences are non-Euclidean.

Next, we move away from these specific examples and present a simple

condition that ensures the existence of an equilibrium in a two-dimensional

policy space. This condition requires that the two candidates locate at the

ideal point of some voter and that each voter can be paired with another

voter whose preferences are generally opposed. In order to formally state the
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result, we need the following definitions. For vectors p, q ∈ R
d, we use the

notation cone{p, q} = {αp + βq | α, β ≥ 0 and α + β > 0} to denote the

convex cone generated by p and q and we refer to the cone generated by −p

and −q as the “opposed cone” of p and q. For any nonempty set G ⊆ N , a

function π : G → G is a pairing on G if π is one-to-one and, for all i ∈ G,

π(π(i)) = i.

Proposition 1 Assume n is odd, d = 2, and assume (A1). If xA = xB = x̂,

where ∇uk(x̂) = 0 for some voter k, and there exists a pairing π on N \ {k}

such that, for all i ∈ N \ k and for all C = A,B,

∇ui(x̂) · ∇uC(x̂) 6= 0 ⇒ ∇uπ(i)(x̂) ∈ cone{−∇uC(x̂),−∇ui(x̂)}, (2)

then (xA, xB) is an equilibrium.

The restriction expressed in condition (2) is illustrated in Figure 3. In

the figure, the opposed cone of the gradients of candidate C and voter i is

pictured, and the condition requires that the gradient of the voter paired with

i must lie in this opposed cone. In other words, voter i must be “blocked” by

some voter π(i), in that any alternative that candidate C and voter i prefer

to x̂ must make voter π(i) worse off. Thus, this condition is equivalent to

requiring that x̂ be Pareto optimal relative to voters i and π(i) and candidate

C. It is easy to see that this sufficient condition is satisfied by the two

examples presented above, and it is satisfied at the core point, if it exists.

The proof of the proposition is as follows. Suppose that xA = xB = x̂

is not an equilibrium. Then, as n is odd, there must be an alternative y

that is majority-preferred to x̂ such that uC(y) > uC(x̂) for some candidate

C. If we denote the vector from x̂ to y by q, then by strict quasi-concavity

any alternative z a sufficiently small distance from x̂ in direction q must also

satisfy zP x̂ and uC(z) > uC(x̂). Clearly, voter k prefers x̂ to z, and thus

(n+1)/2 of the remaining n− 1 voters must prefer z to x̂. This implies that

for any pairing π on N \ {k}, there must be a pair of voters, j and π(j), that

12
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Figure 3: Opposed cone of ∇uC(x̂) and ∇ui(x̂)

both prefer z to x̂. But then x̂ is not Pareto optimal relative to voters j and

π(j) and candidate C, as required by the condition of the proposition.

While Proposition 1 gives conditions sufficient for existence of equilibria,

it is possible that some of these equilibria may be fragile, in the sense that

arbitrarily small perturbations of voter or candidate preferences may lead

to nonexistence. However, if we strengthen the condition of Proposition 1

so that blocking gradients are required to be in the “open” opposed cone

(where α and β are restricted to be strictly positive), then it is clear that the

equilibria established in the proposition will be robust to such perturbations.

The proposition requires that condition (2) holds for both candidates.

That is, the gradient of the voter paired with i must lie in the intersection

of the opposed cones of i and A and i and B. Now, it is easy to see that if

the gradient of voter i is between the gradients of the two candidates, then

the opposed cone of i and A intersects with the opposed cone of i and B

13



in exactly one direction, namely, −∇ui(x̂). In other words, the sufficient

condition requires that voters whose gradients lie between the gradients of

the candidates must be paired with voters whose gradients point in exactly

the opposite direction. As we show in the next section, this condition on

voter gradients in this region is actually necessary for nonaligned equilibria

to exist.

4 Necessary Conditions

In this section, we present necessary conditions for the existence of particular

types of equilibria in our model. By doing so, we shed light on whether such

equilibria are likely to exist or not for a typical choice of preferences. We first

establish that, in every nonsatiated equilibrium, the candidates must choose

the same platform, a phenomenon termed “policy coincidence.” Thus, if

neither candidate is at her optimal position, then the incentives of electoral

competition lead to a unique policy choice for the voters, even though the

candidates might have starkly different policy preferences.

Theorem 1 Assume (A1) and (A2). If (xA, xB) is a nonsatiated equilib-

rium, then xA = xB.

As a consequence of this theorem, in any equilibrium of the candidate

positioning game, either one (or both) of the candidates is at her ideal point

or they choose identical positions. It is easy to find examples of the first

sort of “satiated” equilibria that violate policy coincidence. Figure 4 gives

an example of such an equilibrium with one dimension and one voter with

Euclidean preferences. Here, candidate A’s ideal point, x̃A, is to the left of

candidate B’s, which is to the left of the voter’s ideal point, x̃1. If candidate

B’s platform, xB, is at her ideal point, x̃B, and if candidate A locates any-

where to the left of B, then neither candidate can deviate profitably.11 In

11A similar example with n even can be constructed simply by placing a second voter’s
ideal point to the right of voter 1’s.

14



PSfrag replacements

xA xB

xA = xB
x̂

x̃A x̃B x̃1

x̃2

x̃3

x̃4

x̃5

∇u1(x̂)
∇u2(x̂)
∇u3(x̂)
∇u4(x̂)
∇u5(x̂)

∇u5(x̂) = 0
∇uA(x̃3)
∇uB(x̃3)
∇uB(x̃3)
∇uA(x̃3)

∇uA(xA) = ∇uB(xA)

∇u2

∇u3

∇uA(x̂)
∇uB(x̂)

x
w
xε
t
Y
Z
x̂

∇uC(x̂)
−∇uC(x̂)
∇ui(x̂)

−∇ui(x̂)
∇uπ(i)(x̂)

Figure 4: A “satiated” equilibrium without policy coincidence

this example of a satiated equilibrium, one candidate happens to lose with

probability one; in fact, this can be shown to be a general feature of satiated

equilibria. Proposition 2, in the next section, gives a condition that rules out

the possibility of such equilibria when n is odd. In the one-dimensional case,

the condition is simply that the candidates’ ideal points lie on opposite sides

of the median ideal point.

We can say considerably more about equilibria in which the gradients

of the candidates do not point in the same direction, precluding the equi-

librium in Figure 4. We establish that, when the number of voters is odd,

the candidates must locate at some voter’s ideal point, say x̂. Moreover, a

limited version of Plott’s (1967) symmetry condition must hold: it must be

possible to pair voters whose gradients are between the candidates’ gradients

with voters whose gradients point in exactly opposite directions. For vectors

p, q ∈ R
d, we use the notation cone◦{p, q} = {αp + βq | α, β > 0} to denote

the open cone generated by p and q.

Theorem 2 Assume n is odd, and assume (A1). If (xA, xB) is a non-

aligned equilibrium, then xA = xB = x̂, where ∇uk(x̂) = 0 for some voter

k. If ∇uA(x̂) and ∇uB(x̂) are linearly independent, then for every p ∈

cone◦{∇uA(x̂),∇uB(x̂)},

| {i ∈ N | ∃α > 0 : ∇ui(x̂) = αp} | = | {i ∈ N | ∃α < 0 : ∇ui(x̂) = αp} |.

(3)

If ∇uA(x̂) and ∇uB(x̂) are linearly dependent, then equation (3) holds for

all p ∈ R
d.
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Figure 5: The symmetry condition of Theorem 2

In this theorem, equation (3) is the formal expression requiring voters to

be matched with other voters with opposing gradients. This requirement is

limited, in that it need only hold for voters with gradients in a prescribed

region. This is depicted in Figure 5. Here, the candidates locate at voter 5’s

ideal point. The gradients of voters 1 and 3 point in opposite directions. The

gradients of voters 2 and 4 are not matched in this way, but, because neither

gradient (or its opposite) lies in the open cone generated by the candidates’

gradients, the symmetry condition of the theorem is preserved.12

By the first part of the theorem, the candidates must locate at some ideal

point, say x̂, in a nonaligned equilibrium. The proof of the remainder of the

theorem is largely concerned with the case in which the candidates’ gradients

are linearly independent. We show that the set of platforms weakly majority-

12In fact, the condition of Proposition 1 is satisfied, so that it is indeed an equilibrium
to locate at x̂.
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Figure 6: A kink in the boundary of the majority-preferred-to set

preferred to x̂, the region described by hash marks in Figure 6, lies below

the hyperplanes defined by the gradients of the candidates. This implies a

kind of “kink” in the boundary of that set, one that is not possible when

the core is nonempty and the preferences of the voters are Euclidean. Under

those conditions, the majority preference relation would coincide with the

preference relation of the core voter, so the majority indifference curves would

simply be circles and obviously could not have kinks. Thus, in Calvert’s

(1985) model, the only platform weakly preferred to x̂ is x̂ itself, i.e., the

candidates must locate at the core point, and then symmetry of the voters’

gradients follows from Plott’s (1967) theorem. In the proof of Theorem 2,

we show, without assuming Euclidean preferences or the existence of a core

point, that the boundary of the set of platforms weakly majority-preferred to

x̂ is “kinked enough” only if the symmetry condition of the theorem holds.
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Figure 7: Disequilibrium satisfying the necessary condition

Figure 7 demonstrates that the necessary conditions for equilibrium pre-

sented in Theorem 2 are not sufficient. In particular, if the candidates are

located at voter 3’s ideal point with candidate gradients as depicted, then

the conditions of the theorem are satisfied, but candidate A can move to a

more desirable platform preferred by voters 1 and 2. Therefore, this choice

of candidate positions is not an equilibrium.

Theorem 2 applies only to nonaligned equilibria. That it cannot be ap-

plied to “aligned equilibria,” even those in which the candidates adopt the

same platform, can be seen by modifying the example of Figure 4. Suppose

both candidates have the same platform, say x̂, anywhere between candidate

B’s ideal point, x̃B, and the voter’s, x̃1. This is a nonsatiated, aligned equi-

librium: for each candidate, the only platforms majority-preferred to x̂ are

less desirable than x̂. Clearly, the candidates are not located at the ideal

point of any voter, and the symmetry condition of the theorem is violated.

Proposition 3, in the next section, gives a condition under which no such

aligned equilibria will exist. In the one-dimensional case, the condition there

is simply that the candidates’ ideal points lie on opposite sides of the median.
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There is a limitation of Theorem 2: the symmetry condition, equation (3),

applies only to voters with gradients in the plane defined by the candidates’

gradients. Thus, in more than two dimensions, this condition only applies to

voters with gradients that are precisely co-planar with the gradients of the

candidates, an event that generically never occurs. In such multidimensional

spaces, then, a direct application of Theorem 2 yields a negligible restriction

on voter’s preferences. However, we can use this theorem to prove the next,

which imposes a severe restriction on voters with gradients that are not co-

planar with the candidates’ gradients. Precisely, Theorem 3 says that, given

a nonaligned equilibrium (x̂, x̂), for every voter whose gradient does not lie

on the plane spanned by the candidates’ gradients, there must be a voter

whose gradient points in exactly the opposite direction. Alternatively, if we

delete the voters whose gradients lie on the plane spanned by the candidates’

gradients, but leaving the x̂ voter, then the platform x̂ must be a core point

of the resulting majority preference relation.

Theorem 3 Assume n is odd, and assume (A1). If (xA, xB) is a nonaligned

equilibrium, then xA = xB = x̂, where ∇uk(x̂) = 0 for some voter k. More-

over, for every p ∈ R
d such that p /∈ span{∇uA(x̂),∇uB(x̂)},

| {i ∈ N | ∃α > 0 : ∇ui(x̂) = αp} | = | {i ∈ N | ∃α < 0 : ∇ui(x̂) = αp} |.

As with Theorem 2, Theorem 3 applies only to nonaligned equilibria and it

cannot be extended to aligned equilibria, even those in which the candidates

adopt the same platform.13 An example is given in Figure 8. Here, we assume

three voters and Euclidean preferences over a multidimensional policy space,

with the ideal points of the voters arranged in an isosceles triangle, voter

1’s ideal point at the apex. Candidate B’s ideal point is above that, and

13To be clear, Theorem 2 limits voters’ gradients that are in the open cone of (and thus
co-planar with) the candidates’ gradients, and Theorem 3 limits the gradients that are not
co-planar with the gradients of the candidates. The latter theorem is therefore nonvacuous
only in more than two dimensions.
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Figure 8: A nonsatiated aligned equilibrium violating the conditions of The-
orem 3

candidate A’s ideal point is above that. In this example, it is an equilibrium

for both candidates to adopt the same platform anywhere between voter 1’s

and candidate B’s ideal points. One possible location is indicated in the

figure. Clearly, in this equilibrium the candidates locate at no voter’s ideal

point. Moreover, the span of the candidate’s gradients is the line through

their ideal points, and neither voter 2’s nor voter 3’s gradients can be opposed

to voter 1’s in the required way, violating the symmetry condition of the

theorem.

The following corollary of Theorem 3 gives a general condition on the

gradients of voters under which nonaligned equilibria fail to exist. The con-

dition holds quite widely when the dimension of the policy space is at least

three. It suggests that, for “most” specifications of differentiable, strictly

quasi-concave voter utility functions, we would not expect nonaligned equi-

libria to exist—and that, if existence did obtain, it would be sensitive to even

slight variations of voter or candidate preferences.

Corollary 1 Assume n is odd, and assume (A1). Assume that the dimen-
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sion of span{∇uj(x̃i) | j ∈ N} is at least three. And assume that, for all

voters j and k, ∇uj(x̃i) and ∇uk(x̃i) are linearly independent. Then there

does not exist a nonaligned equilibrium.

The proof the corollary is simple. Theorem 3 tells us that, given a non-

aligned equilibrium (xA, xB), the candidates must locate at the ideal point

of some voter, say i. Since span{∇uA(x̃i),∇uB(x̃i)} is a two-dimensional

space and the dimension of span{∇uj(x̃i) | j ∈ N} is at least three, there is

some voter j such that ∇uj(x̃i) /∈ span{∇uA(x̃i),∇uB(x̃i)}. But, under the

assumptions of the corollary, there is no voter whose gradient points in the

direction opposite that of voter j’s, a contradiction.

Thus, with n odd, the “typical” case is that no nonaligned equilibria exist.

An even stronger result holds if n is even: nonaligned equilibria never exist.

Existence in this case hinges on the possibility that the candidates’ gradients

point in exactly the same direction in equilibrium (as in Figure 8), or, as

shown in the next section, both candidates locate at their own ideal point.

Theorem 4 Assume n is even, and assume (A1) and (A2). There does not

exist a nonaligned equilibrium.

In the proof of the theorem, we first verify that, as in Theorem 2, the

candidates would have to locate at the ideal point, say x̂, of some voter, say

i. Deleting that voter from N , we are left with an electorate, N ′, with an odd

number of voters. Furthermore, there is no voter in N ′ with ideal point x̂,

violating a necessary condition in Theorem 2 for equilibrium in the reduced

model. Thus, one of the candidates can move to a better platform, say x′,

preferred by a majority of voters in N ′ to x̂. Adding i back to the electorate,

x′ still weakly beats x̂. Under condition (A2), this still gives the candidate a

profitable deviation, and we conclude that nonaligned equilibria cannot exist

when n is even.
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5 Additional Types of Equilibria

In the preceding section, we gave several results for nonsatiated and non-

aligned equilibria. But what about equilibria of this game that are not

nonaligned or nonsatiated? For example, Theorem 1 establishes that nonsa-

tiated equilibria exhibit policy coincidence, but as the example in Figure 4

demonstrates, there can exist equilibria that are not nonsatiated and that do

not exhibit policy coincidence. In this case, then, without a more detailed

equilibrium selection argument, we cannot state unequivocally that policy

coincidence will or will not occur. To deal with these issues, in this section

we provide conditions under which satiated and aligned equilibria will not

exist. Specifically, we present two results. The first gives a sufficient con-

dition under which all equilibria must be nonsatiated, and the second gives

conditions under which all equilibria must be nonaligned.

Our first result is Proposition 2. It uses the condition that, given either

candidate’s ideal point, there exists a majority-preferred platform that the

other candidate also prefers. This extends the condition, frequently assumed

in one-dimensional models, that the candidates’ ideal points are on opposite

sides of the median (or medians, when n is even). We discuss the plausibility

of a stronger condition at the end of the section.

Proposition 2 Assume (A1) and (A2). Assume that there exists platforms

x, y ∈ X such that xP x̃A and uB(x) > uB(x̃A) and that yPxB and uA(y) >

uA(x̃B). If (xA, xB) is an interior Nash equilibrium, then either it is nonsa-

tiated or n is even and xA = x̃A and xB = x̃B.

Returning to the issue discussed at the beginning of this section, this

proposition and Theorem 1 imply that policy coincidence must hold when

n is odd and the condition given in the proposition holds. Obviously, the

example in Figure 4 does not satisfy this condition as both candidates’ ideal

points are to the left of the voter’s ideal point.
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Figure 9: A satiated equilibrium with n even, as in Proposition 2

When n is even, Proposition 2 leaves open the possibility of a satiated

equilibrium, as long as both candidates locate at their ideal points. This

possibility is depicted in Figure 9, where the ideal points of the two voters

are between those of the candidates. It is easy to see that the condition of

Proposition 2 is satisfied: the ideal point of voter 1, x̃1, is preferred to x̃A

by both voters and by candidate B; similarly, x̃2 is preferred to x̃B by the

voters and by candidate A. Note that there exist open intervals Y and Z

around x̃A and x̃B, respectively, such that every platform in Y is majority-

indifferent to every platform in Z. Thus, because there are no small moves

for either candidate to platforms that will beat her opponent, our argument

for Theorem 1 (in the appendix) that one candidate will have a profitable

deviation does not go through. Indeed, there is no compelling reason why one

of the candidates must have a profitable deviation in this situation — that

will depend on the exact specification of the candidates’ utility functions.

The next proposition gives a condition, strengthening that of Proposi-

tion 2, under which all equilibria are nonaligned. Once again, the condition

extends the familiar one from one-dimensional models that the candidates’

ideal points are on opposite sides of the median. We will say that an interior

platform x satisfies the alignment condition if α∇uA(x) = β∇uB(x) for some

α, β ≥ 0, at least one nonzero.

Proposition 3 Assume (A1) and (A2). Assume that, for each x ∈ X sat-

isfying the alignment condition, there exists a platform y ∈ X such that yPx

and, for some candidate C, uC(y) > uC(x). If (xA, xB) is a nonsatiated

equilibrium, then it is nonaligned.

The proof is trivial and omitted. To see that the condition in this propo-
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sition is indeed stronger than that of Proposition 2, set x = x̃A; then the

condition of Proposition 3 yields C and y such that uC(y) > uC(x); and

then, of course, we must have C = B, fulfilling the condition of Proposi-

tion 2. Therefore, when n is odd, all equilibria are nonaligned under the

condition of Proposition 3.

The condition of Proposition 3 is not completely transparent, and so it

is of interest to understand when it (and therefore the condition of Propo-

sition 2) might hold. As an illustration, we give a sufficient condition for

the antecedent condition in Proposition 3 to apply. In doing so, we establish

that if preferences are “close” to having a core point, then all nonsatiated

equilibria will be nonaligned and thus the strident symmetry conditions of

Theorem 3 must be satisfied.

To begin, suppose that d ≥ 2, that n is odd, and that voter and can-

didate preferences are Euclidean. Let Y ⊆ X denote the yolk, the smallest

closed ball intersecting all median hyperplanes (McKelvey, 1986). Thus, if

the hyperplane

Hu,v = {z ∈ R
d | 2z · (u− v) = (u+ v) · (u− v)}

bisecting two platforms, u and v, does not intersect Y , then majority in-

difference between u and v cannot hold. Whether uPv or vPu depends on

whether Y is on the u-side or v-side of Hu,v. Suppose further that there

exists t ∈ R
d such that, for all w ∈ Y ,

t · x̃A < t · w < t · x̃B.

For simplicity, we normalize t so that ||t|| = 1. Note that, since Y is compact,

the minimum value of t·w over Y , denoted min t·Y , exists and t·x̃A < min t·Y .

Likewise, max t · Y < t · x̃B. Also note the implication that t · (x̃B − x̃A) > 0.

Obviously, this situation, depicted in Figure 10, is more plausible when the

yolk is small, i.e., when the core is “close” to being nonempty. When the
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Figure 10: The yolk “separating” the candidates’ ideal points

core is nonempty, it is equal to the yolk and the above condition holds as

long as the candidates’ ideal points are not colinear with (and to the same

side of) the core point.

When such a t exists, the assumption of Proposition 3 holds. To see this,

note that the set of platforms that satisfy the alignment condition must lie

on the line span{x̃A− x̃B}+ x̃A spanned by the candidates’ ideal points, but

not strictly between them. Letting x be such a platform, that means

x = αx̃A + (1− α)x̃B = x̃B + α(x̃A − x̃B)

for α ≥ 1 or α ≤ −1. If α ≥ 1, then

t · x = t · x̃B + t · (x̃A − x̃B) + (1− α)t · (x̃B − x̃A)

= t · x̃A + (1− α)t · (x̃B − x̃A)

≤ t · x̃A.
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Similarly, t · x ≥ t · x̃B if α ≤ −1. Suppose without loss of generality that

α ≥ 1, as in Figure 10. Define xε = x + ε(x̃B − x̃A), and pick ε > 0 small

enough that t · xε < min t · Y . With t · x ≤ t · x̃A < min t · Y , this implies

that the bisecting hyperplane Hx,xε does not intersect the yolk. And since

the yolk is on the xε-side of the hyperplane, we have xεPx. Finally, note that

uB(xε)− uB(x) = ε(2α− ε)(x̃B − x̃A) · (x̃B − x̃A),

which is positive for small enough ε > 0, as required.

6 Local Robustness of Nonexistence

Our analysis has so far been confined to environments in which voters vote

in a deterministic fashion (with only indifferent voters possibly randomiz-

ing between the candidates) and in which candidates are motivated solely

by policy preferences. This model is, of course, a stylized representation of

real-world elections, and it is best viewed as a benchmark, rather than taken

literally. It is therefore important to consider whether our results on equi-

librium nonexistence persist when the model is subject to perturbations, of

which we consider two types: we allow for uncertainty in voting behavior,

as in the literature on probabilistic voting, and we allow for more general

candidate incentives.

The introduction of noise into voting behavior alters the structure of the

electoral game, smoothing the candidates’ payoffs and eliminating disconti-

nuities present in the deterministic model. Nonconvexities in the candidates’

payoffs may remain, however, and existence of (pure strategy) equilibria is

not guaranteed. Indeed, we show that when equilibria fail to exist in our

benchmark model, as is often the case, equilibria will also fail to exist in

probabilistic voting models “close” to the benchmark. This remains true

even if we give the candidates a small positive benefit from holding office,

even if that benefit can vary with the platforms of the candidates. Thus,
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adding a small amount of randomness into voter behavior and perturbing

the incentives of the candidates will not solve the nonexistence problem of

Corollary 1 and Theorem 4. An added insight from the result is that it is

the nonconvexities – not discontinuities in candidate payoffs – that drive the

problem of nonexistence in the benchmark model.

To extend our analysis, we imbed our model in a space Λ, where each

model λ ∈ Λ corresponds to a function P (x, y|λ), which represents candidate

A’s probability of winning, and functions wA(x, y|λ) and wB(x, yλ), which

represent any benefits of winning to the candidates. We assume these func-

tions take non-negative values, but we do not impose continuity or any other

restrictions. These benefits could capture the prestige of holding office, or

monetary rents due to salary or bribes, or the cooperation of interest groups

or party members. More generally, wA(x, y|λ) could be interpreted as re-

flecting the preferences of constituency groups which the office holder, as a

representative, may feel obligated to serve. When A chooses platform x and

B chooses platform y in model λ, A’s expected utility is then

UA(x, y|λ) = P (x, y|λ)(uA(x) + wA(x, y|λ)) + (1− P (x, y|λ))uA(y),

and similarly for B. The definitions of equilibrium for an arbitrary model

λ remain as above. We designate the model λ∗ as the model with pure pol-

icy motivation and deterministic voting studied above, so that P (x, y|λ∗) =

P (x, y) and wA(x, y|λ
∗) = wB(x, y|λ

∗) = 0 for all x, y ∈ X, and we let P ∗

denote the strict majority preference relation in λ∗.

We say a sequence {λm} approximates λ∗ if (i) for all x, y ∈ X, we have

0 < P (x, y|λm) < 1, (ii) wA(·|λ
m) → 0 and wB(·|λ

m) → 0 uniformly, and

(iii) for every x, y ∈ X such that xP ∗y, there exist open neighborhoods G of

x and H of y such that P (·|λm)→ 1 uniformly on G×H and P (·|λm)→ 0

uniformly on H × G. While condition (i) formalizes the idea that voting is

indeed probabilistic, condition (ii) requires that benefits of winning become

negligible in the limit, as they are in the model λ∗. Condition (iii) stipulates
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that the candidates’ probability of winning satisfies a certain continuity con-

dition. In contrast to (ii), uniform convergence is required only in the case

of a majority strict preference, and then only in an open set around the can-

didates’ platforms.14 Though technical in nature, the condition is weak: we

show later in the context of the two most widely used models of probabilistic

voting that our definition captures the intuitive meaning of being “close” to

deterministic.

The next proposition establishes, essentially, that if there is no equilib-

rium in the benchmark model, as we have shown is often the case, then there

is an open set of models containing λ∗ in which equilibria fail to exist. For

simplicity, we have chosen to phrase the result in terms of equilibria, rather

than nonsatiated or nonaligned equilibria, but the logic of the proof holds

fairly generally: by a similar proof, for example, we can show that if there

is no nonaligned equilibrium in the deterministic model, then there are no

nonaligned equilibria in nearby probabilistic voting models.15 Likewise, for

simplicity we restrict attention to the case of an odd number of voters.16

Theorem 5 Assume n is odd and X is compact. Let {λm} approximate

λ∗. If there is no equilibrium in λ∗, then, for high enough m, there is no

equilibrium in λm.

Put contrapositively, the proof of Theorem 5 establishes the upper hemi-

continuity of the equilibrium correspondence at the benchmark model: the

limit point of equilibria in models close to λ∗ must be an equilibrium in λ∗.

14These restrictions are critical for the interpretation of our results, as a sequence of
continuous functions cannot converge uniformly to a discontinuous function. Without
them, since the probability of winning function is discontinuous in model λ∗, we would not
be able to approximate λ∗ with a sequence of continuous probability of winning functions.

15We would then need to add some technical conditions. We would require that util-
ity functions have continuous gradients, and we would restrict attention to sequences of
equilibria that do not converge to a boundary point of the policy space and such that the
candidates’ gradients do not become arbitrarily close to aligned.

16A similar result holds for n even, but the appropriate definition of approximation
becomes somewhat more involved.
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Ordinarily, this property of equilibrium correspondences is to be expected.

In our case, however, the limiting model is discontinuous, and then the con-

ventional wisdom does not apply. We use the structure of candidate and

voter utilities, along with some uniform convergence along the sequence of

probabilistic voting models (which, as we see next, is quite natural), to prove

the result. In these respects, Theorem 5 is similar to Corollary 8 from Banks

and Duggan (2004), who show that, when the core is empty, equilibria in

probabilistic voting models close to deterministic do not exist.17

We have formulated the idea of “approximation” in abstract terms in

order to capture the intuitive meaning of “close” to the benchmark model.

While conditions (i) and (ii) are not controversial, condition (iii) is less trans-

parent. Next, we establish that the condition is permissive in one of the most

commonly used probabilistic voting frameworks, which captures uncertainty

about voters’ preferences for nonpolicy characteristics of the candidates: in

the additive bias model, the voters’ utilities from candidate platforms are

subject to random utility increments. We show that a sequence of additive

bias models in which voting behavior becomes arbitrarily close to determin-

istic, in intuitive terms, will necessarily satisfy our condition.

In the additive bias model, each voter i has policy preferences given by ui,

as in λ∗. In addition, each voter’s utilities are modified by an additive utility

shock to each candidate. Without loss of generality, we normalize the shock

for candidate A to zero and consider only a “bias,” denoted βi, for candidate

B. The bias term βi is stochastic and independent of the other voters’ biases

and the platforms of the candidates. Given the candidates’ platforms and

bias βi, we assume voter i votes for candidate B if ui(xA) < ui(xB)+βi, votes

for candidate A if this inequality is reversed, and votes for each candidate

with probability one half if equality holds. Here, a model λ determines a

distribution function Fi(·|λ) for each voter i from which the voter’s bias

17Banks and Duggan (2004) restrict attention to a specific model of probabilistic voting,
the “additive bias model,” and they consider expected plurality maximizing candidates.
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term is drawn. We assume Fi is continuous and strictly increasing. Thus,

the probability voter i votes for candidate A is

Pi(xA, xB|λ) = Fi(ui(xA)− ui(xB)|λ),

and the probability that A wins is

P (xA, xB|λ) =
∑

C∈M

(

∏

i∈C

Pi(xA, xB|λ)

)(

∏

i/∈C

(1− Pi(xA, xB|λ)

)

,

where M denotes the subsets of voters with greater than n/2 members.

Proposition 4 Let {λm} be a sequence of additive bias models such that,

for each voter i, the sequence Fi(·|λ
m) converges weak* to the point mass on

zero.18 Then {λm} satisfies condition (iii) in the definition of approximation.

We also illustrate the role of condition (iii) in another common proba-

bilistic voting framework, which captures uncertainty about voters’ policy

preferences: in the random preference model, policy preferences of voters are

themselves random variables. Again, we show that condition (iii) is consis-

tent with the intuitive meaning of “close” to deterministic voting.

In the random preference model, each voter’s policy preferences are given

by ui(x|θ), where θ is a preference parameter lying in a metric space Θ, and

where ui : X × Θ → < is jointly continuous. Here, a model λ determines a

distribution over Θ, which in turn generates probabilistic voter preferences.

For each voter i, define

Pi(xA, xB|λ)

= λ({θ | ui(xA|θ) > ui(xB|θ)}) +
1

2
λ({θ | ui(xA|θ) = ui(xB|θ)}),

and define candidate A’s probability of winning as we have above.

18That is, for every bounded, continuous φ : R → R, the integrals
∫

φ(z)Fi(dz|λ
m)

converge to φ(0).
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Proposition 5 Let {λm} be a sequence of random preference models such

that λm converges to λ∗ in the weak* topology, where λ∗ puts probability one

on some θ∗ ∈ Θ.19 Then {λm} satisfies condition (iii) in the definition of

approximation.

Condition (iii) captures the notion of “close” to deterministic voting in

other frameworks as well, extending the scope of Theorem 5. For example,

in the quantal response voting model, considered by McKelvey and Patty

(2003), when the distribution on voters’ error terms converges to zero, vot-

ing behavior approximates our voting in our deterministic model, and again

condition (iii) is satisfied. For another example, if each voter observes the

candidates’ platforms with some noise (and votes as though the observed

platforms were correct), then condition (iii) is satisfied as the noise goes to

zero.20

7 Mixed Motivations

Theorem 5 of the previous section demonstrated a neighborhood containing

our original model in which our negative results hold: despite small pertur-

bations of the model in a rich variety of directions (allowing for probabilistic

voting and office benefits of a quite arbitrary form), equilibrium nonexistence

carries over. Here, we introduce a degree of office-motivation in the simplest

way possible, in the form of a fixed, positive benefit of winning. We let w > 0

denote the benefit of winning, in which case candidate A’s expected utility

is given by

UA(x, y) = P (x, y) (uA(x) + w) + (1− P (x, y)) uA(y). (4)

19That is, for every bounded, continuous φ : Θ → R, the integrals
∫

φ(θ)λm(dθ) converge
to φ(θ∗).

20This claim does not hold if the voters are strategic, as in the model of Lagerlöf (2003).
There, because candidate deviations are unobservable, candidates must locate at their
ideal points in equilibrium.
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As a consequence of our results for policy-motivated candidates, this func-

tional form permits a global characterization of nonsatiated equilibria. For

simplicity, we assume the number of voters is odd.

Proposition 6 Assume n is odd, preferences are given by equation (4), and

(A1) holds. Then (xA, xB) is a nonsatiated equilibrium if and only if xA =

xB = x∗, where x∗ is a core point.

The proof is straightforward. Clearly, it is an equilibrium for both can-

didates to locate at the core point. To prove the converse, the arguments of

Theorem 1 can be modified to obtain the result that, in a nonsatiated equi-

librium, the candidates must adopt the same platform, say x̂. To show that x̂

must be a core point, suppose not. Then there is some y majority-preferred

to it. That platform may be a worse policy outcome from a candidate’s

point of view, but every platform between x̂ and y is also majority-preferred

to x̂. By picking such a platform close enough to x̂, the candidate can make

the disutility of the policy change less than w, the utility from winning, a

contradiction. Thus, in this mixed model, an equilibrium must exhibit the

symmetry of the voters’ gradients from Plott’s (1967) theorem, and we again

conclude that equilibria will rarely exist. Given the policy coincidence re-

sult of Theorem 1, the argument for this case is drastically simplified by the

discontinuity implied by the fixed reward w. Our results for pure policy-

motivation show, however, that the negative conclusion is not merely an

artifact of this discontinuity.

In the n even case, no strong symmetry condition is required of core

points, and thus equilibria with purely office-motivated candidates need not

be rare or fragile. Under mixed motivations, however, this observation no

longer holds. In particular, if we impose some additional structure on P (x, y)

in the case of majority indifference, such as the assumption that all ties are

broken equiprobably, then we can prove that no nonaligned equilibria exist.

The argument is similar to the proof of Theorem 4. Thus, the robustness of
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equilibria possible with office-motivation does not extend to the mixed case,

at least when considering nonaligned equilibria.

8 Conclusion

Although our conclusions are negative, they nevertheless have important

consequences for formal models of politics. Our results illustrate how the

findings of the standard spatial model carry over to a setting with a natural

alternative assumption about candidate preferences. Indeed, the equilibrium

existence problem runs much deeper than previously realized: even after

we remove many of the discontinuities created by pure office-motivation in

multiple dimensions, policy-motivated candidates typically have a sufficient

number of deviations to break any potential equilibrium. The nonexistence

problem persists even if we smooth the candidates’ payoffs by adding a small

amount of uncertainty about voting behavior, demonstrating the role of non-

convexities in the failure of existence. Our results emphasize the importance

of modelling elections in richer detail, whence equilibria may emerge from ad-

ditional structure, whether institutional (parties, interest groups, the media),

informational (through reputational concerns), or dynamic (within or across

elections). As these modelling approaches will likely include a component of

policy-motivation, the techniques developed in this paper may inform future

research by shedding light on the intricacies of policy-oriented incentives.

A Proofs of Results

Many of the arguments of this appendix will use the following standard

lemma, which follows in a straightforward way from the strict quasi-concavity

of the voters’ utility functions.

Lemma 1 If xRy then, for all α ∈ (0, 1), αx + (1 − α)yRy; if n is odd,

moreover, then αx+ (1− α)yPy.
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We now state and prove the results of Sections 3 and 4.

Theorem 1 Assume (A1) and (A2). If (xA, xB) is a nonsatiated equilib-

rium, then xA = xB.

Proof : Suppose (xA, xB) is a nonsatiated equilibrium and that xA 6= xB.

Without loss of generality, suppose xARxB. By (A1), this implies that

P (xA, xB) > 0. We first deal with the case of n odd. We begin by establishing

that uA(xA) > uA(xB). If uA(xB) > uA(xA), then, because P (xA, xB) > 0,

A can gain by moving to xB. This contradicts the supposition that (xA, xB)

is an equilibrium. If uA(xA) = uA(xB), then UA(xA, xB) = uA(xA). Let

x′ = (1/2)xA + (1/2)xB, so by Lemma 1, x′PxB. Thus (A1) implies that

UA(x
′, xB) = uA(x

′). Since uA is strictly quasi-concave, we have uA(x
′) >

uA(xA) = uA(xB). So deviating to x′ is profitable for A, a contradiction.

Therefore, it must be that uA(xA) > uA(xB).

Next, we rule out the case xAIxB. In this case, (A1) requires that

P (xA, xB) < 1. Let {αm} be a sequence increasing to one, and define

xm = αmxA + (1 − αm)xB. By Lemma 1, xmPxB for all m, and thus

UA(xm, xB) = uA(xm). As xm → xA and uA(xA) > uA(xB), we have

UA(xm, xB) > UA(xA, xB) for large enough m, a contradiction. Therefore,

xAPxB must hold.

By continuity of the ui’s, there is an open set Y ⊆ R
d containing xA such

that, for all x ∈ X ∩ Y , xPxB. Since (xA, xB) is nonsatiated, ∇uA(xA) 6= 0.

Letting xε = xA + ε∇uA(xA) for ε > 0, and choosing ε close enough to zero,

we have xε ∈ X because xA is interior toX, and uA(xε) > uA(xA) and xεPxB.

Therefore, A can gain by deviating to xε, a contradiction. So xA 6= xB cannot

hold.

We now deal with the n even case, maintaining the supposition that

xARxB. Again, we start by showing that uA(xA) > uA(xB). The same

argument as above rules out uA(xB) > uA(xA). If uA(xA) = uA(xB), then,

as above, let x′ = (1/2)xA + (1/2)xB, and note that uA(x
′) > uA(xA) =
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uA(xB) = UA(xA, xB). In the n even case, Lemma 1 implies only that x′RxB.

But (A1) still implies that P (x′, xB) > 0 and so UA(x
′, xB) > UA(xA, xB).

So A can gain by deviating to x′. Therefore, uA(xA) > uA(xB) holds.

Once again, we next rule out the case xAIxB. In this case, by definition,

nA(xA, xB) + nI(xA, xB) ≥ n/2. For sufficiently large m (with xm defined as

above), the nA(xA, xB) voters who prefer xA to xB will also prefer xm to xB

and the nI(xA, xB) indifferent voters will strictly prefer xm to xB, by strict

quasi-concavity. Therefore, if nA(xA, xB)+nI(xA, xB) > n/2, deviating to xm

results in A winning for sure, which is profitable for xm close enough to xA. So

it must be that nA(xA, xB) + nI(xA, xB) = n/2 which implies nB(xA, xB) =

n/2. If nA(xA, xB) < n/2, then assumption (A2) and the argument just

given imply that P (xm, xB) > P (xA, xB) for sufficiently large m. So this is

a profitable deviation for A. If nA(xA, xB) = n/2, then continuity yields an

open set Y ⊆ R
d such that for all x ∈ X ∩ Y and all i ∈ N , ui(xA) > ui(xB)

if and only if ui(x) > ui(xB). Defining xε as above, (A2) then requires that

P (xε, xB) = P (xA, xB), for sufficiently small ε. Therefore, since (xA, xB) is

nonsatiated, A can profitably deviate to xε. Therefore, xAPxB, and the final

contradiction follows as in the n odd case.

Theorem 2 Assume n is odd, and assume (A1). If (xA, xB) is a non-

aligned equilibrium, then xA = xB = x̂, where ∇uk(x̂) = 0 for some voter

k. If ∇uA(x̂) and ∇uB(x̂) are linearly independent, then for every p ∈

cone◦{∇uA(x̂),∇uB(x̂)},

| {i ∈ N | ∃α > 0 : ∇ui(x̂) = αp} | = | {i ∈ N | ∃α < 0 : ∇ui(x̂) = αp} |.

(3)

If ∇uA(x̂) and ∇uB(x̂) are linearly dependent, then equation (3) holds for

all p ∈ R
d.

Proof : Consider any nonaligned equilibrium (xA, xB). As every nonaligned

equilibrium is nonsatiated, we know from Theorem 1 that xA = xB = x̂ for

some x̂ ∈ X. To simplify notation, let pA = ∇uA(x̂) and pB = ∇uB(x̂), and
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normalize both vectors so that ||pA|| = ||pB|| = 1. We first claim that, for

both candidates C, we must have pC · y < pC · x̂ for all platforms y 6= x̂

such that yRx̂. Otherwise, we would have pC · y ≥ pC · x̂ for some y 6= x̂

such that yRx̂. It follows from Lemma 1 that xα = αx̂+ (1− α)yP x̂ for all

α ∈ (0, 1). Also, pC · xα ≥ pC · x̂. Using the assumption that x̂ is interior to

X, we take α close enough to one that xα is also interior to X. Since the ui’s

are continuous, there is an open set Y ⊆ X containing xα such that, for all

z ∈ Y , zP x̂. Defining zβ = xα + βpC , we take β small enough that zβ ∈ Y ,

and therefore zβPx̂. By construction,

pC · (zβ − x̂) = pC · (xα − x̂) + βpC · pC > 0.

Finally, define wγ = γx̂ + (1 − γ)zβ. Again using Lemma 1, wγPx̂ for

all γ ∈ (0, 1). Since pC · (wγ − x̂) > 0, we may take γ close enough

to one that uC(wγ) > uC(x̂). But then, by assumption (A1), we have

UA(wγ, x̂) > UA(x̂, x̂) or UB(x̂, wγ) > UB(x̂, x̂) (depending on the identity

of C), a contradiction. This establishes the claim.

If the gradients of the candidates are linearly dependent at the equilibrium

platform x̂, then, since they are nonzero and do not point in the same di-

rection, it follows that the gradients point in opposite directions: αpA = pB

for some α < 0. Take any y 6= x̂ such that yRx. From the above claim,

pA · y < pA · x̂ and pB · y < pB · x̂. But, since the gradients of the candidates

point in opposite directions, the latter yields pA · y > pA · x̂, a contradiction.

Therefore, x̂Py for all y 6= x̂, which implies x̂ is a core point. Then Plott’s

(1967) theorem implies that x̂ is the ideal point of at least one voter and that

the symmetry condition holds for all p ∈ R
d.

Now consider the case in which the candidates’ gradients are linearly

independent, and suppose that, for all voters i, ∇ui(x̂) 6= 0. Let p ∈

cone◦{pA, pB} be any vector satisfying p = αpA + βpB for some α, β > 0. To

deduce a contradiction, we will first find a vector q ∈ R
d such that p · q = 0,

pA ·q > 0, and pB ·q < 0. Construct q as follows. Since pA and pB are linearly
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independent, we have pA · p < ||p||. Let q be pA minus the projection of pA

onto the one-dimensional subspace spanned by p, i.e.,

q = pA −
(pA · p)

(p · p)
p.

Then, since pA ·pA = 1 and (pA ·p)/||p|| < 1, we have pA ·q > 0. Furthermore,

q ·p = 0, implying pB ·q = −(α/β)pA ·q < 0. This gives us a vector q with the

desired properties. In fact, there is an open set Q containing q such that, for

all s ∈ Q, pA · s > 0 and pB · s < 0. Because N is finite and ∇ui(x̂) 6= 0 for

all voters i, we may choose r ∈ Q so that r · ∇ui(x̂) 6= 0 for all i. Therefore,

since the voters are odd in number, either

{i ∈ N | r · ∇ui(x̂) > 0} or {i ∈ N | r · ∇ui(x̂) < 0}

contains a majority of voters. Suppose, without loss of generality, that this

is true for the first group of voters, and define xε = x̂+ εr for ε > 0. Since x̂

is interior to X, we may choose ε small enough that xε ∈ X. Furthermore,

since ∇ui(x̂) · (xε − x̂) > 0 for a majority of voters, xεPx̂ for ε close enough

to zero. And, since pA · (xε − x̂) = εpA · r > 0, we have uA(xε) > uA(x̂) for

ε close enough to zero. But then, there is a small enough ε such that A can

profitably deviate to xε, a contradiction. Therefore, ∇uk(x̂) = 0 for some

voter k.

Now take any p ∈ cone◦{pA, pB}, and suppose the symmetry condition

of the theorem is violated. We will show that one of the candidates has a

profitable deviation, a contradiction. Let σ = 1 if

|{i ∈ N | ∃α > 0 : ∇ui(x̂) = αp}| > |{i ∈ N | ∃α < 0 : ∇ui(x̂) = αp}|,

and let σ = −1 if the opposite inequality holds. As above, pick q ∈ R
d

such that p · q = 0, pA · q > 0, and pB · q < 0. Let Q be an open set

containing q on which the two strict inequalities hold, and let Q′ = {s ∈
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Q | p · s = 0} be the elements of that set orthogonal to p. For r ∈ Q′, let

O(r) = {s ∈ R
d | s · r = 0} denote the subspace orthogonal to r. We claim

that
⋂

r∈Q′ O(r) = span{p}. To see this, let {b1, . . . , bd−1} be a basis for the

(d − 1)-dimensional subspace orthogonal to p, and take r ∈ Q′ and ε > 0

such that {r+ εb1, . . . , r+ εbd−1} is linearly independent and contained in Q′.

By linear independence, the dimension of

d−1
⋂

h=1

O(r + εbh)

is one. Of course, p ∈ O(r) for all r ∈ Q′, establishing the claim.

Then, since N is finite and k is the only voter with ideal point x̂, choose

r ∈ Q′ so that r · ∇ui(x̂) = 0 if and only if i = k or, for some α 6= 0,

∇ui(x̂) = αp. Partition N \ {k} into four sets,

I = {i ∈ N | r · ∇ui(x̂) > 0}

J = {i ∈ N | r · ∇ui(x̂) < 0}

K = {i ∈ N | ∃α > 0 : ∇ui(x̂) = σαp}

L = {i ∈ N | ∃α < 0 : ∇ui(x̂) = σαp},

and note that |K| > |L|. Without loss of generality, suppose |I| ≥ |J |.

Since N \ {k} contains n − 1 voters, we have |K| + |I| > (n − 1)/2, and

this implies |K| + |I| ≥ (n + 1)/2 > n/2. We will use r to construct a

profitable deviation for candidate A. (If the inequality |I| < |J | held instead,

we would use −r to construct a profitable deviation for B.) Let xδ = x̂+ δr

for δ > 0. Then ∇ui(x̂) · (xδ − x̂) = δ∇ui(x̂) · r > 0 for all i ∈ I, and

pA · (xδ− x̂) = δ∇pA · r > 0. Choose δ close enough to zero that xδ is interior

to X. Define xε = xδ+ εσp for ε > 0, and choose ε close enough to zero that,

for all i ∈ I, ∇ui(x̂) · (xε − x̂) > 0; and small enough that pA · (xε − x̂) > 0.
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Note that, since ∇ui(x̂) · r = 0 for all i ∈ K, we have

∇ui(x̂) · (xε − x̂) = δ∇ui(x̂) · r + ε∇ui(x̂) · σp > 0

for all i ∈ K. Picking ε close enough to zero, we have xε ∈ X and, for all

i ∈ I∪K, ui(xε) > ui(x̂), which implies xεPx̂. Furthermore, uA(xε) > uA(x̂).

But then, once again there is a small enough ε such that A can profitably

deviate to xε, a contradiction. Therefore, the symmetry condition of the

theorem must hold.

Theorem 3 Assume n is odd, and assume (A1). If (xA, xB) is a nonaligned

equilibrium, then xA = xB = x̂, where ∇uk(x̂) = 0 for some voter k. More-

over, for every p ∈ R
d such that p /∈ span{∇uA(x̂),∇uB(x̂)},

| {i ∈ N | ∃α > 0 : ∇ui(x̂) = αp} | = | {i ∈ N | ∃α < 0 : ∇ui(x̂) = αp} |.

Proof : Let (xA, xB) be a nonaligned equilibrium. From Theorem 2, it follows

that xA = xB = x̂, where ∇uk(x̂) = 0 for some voter k. As shown in the

proof of Theorem 2, if the gradients of the candidates are linearly dependent,

then x̂ is a core point, and the symmetry condition of the theorem is satisfied.

We assume, then, that their gradients are linearly independent. As above,

let pA = ∇uA(x̂) and pB = ∇uB(x̂) and normalize so that ||pA|| = ||pB|| = 1.

Moreover, for every voter i, let pi = ∇ui(x̂). Given q, r ∈ R
d, let S(q, r) =

span{q, r} denote the subspace spanned by q and r. We will take q and r to

be linearly independent, implying that S(q, r) is a two-dimensional subspace,

i.e., a plane. Given p, q, r ∈ R
d, let

p(q, r) = projS(q,r) p

denote the projection of p onto the span of {q, r}. Thus, pC(q, r) would be
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the projection of candidate C’s gradient onto that plane. Given p ∈ R
d, let

O(p) = {q ∈ R
d | q · p = 0}

denote the subspace orthogonal to p. Given p ∈ R
d, let

S(p) = span{projO(p) pA, projO(p) pB}

denote the two-dimensional subspace spanned by the projections of the can-

didates’ gradients onto the space orthogonal to p. Given p, q ∈ R
d, let

q(p) = projS(p) q

denote the projection of q onto that plane. Note that, since projO(p) pC ∈ S(p)

and S(p) ⊆ O(p), we have

pC(p) = projS(p) pC = projO(p) pC ,

so pC(p) is just the gradient of candidate C projected onto the subspace

orthogonal to p. That, in turn, implies S(pA(p), pB(p)) = S(p). Finally, note

the further implication that q(p) = q(pA(p), pB(p)).

Let q, r ∈ R
d be vectors such that the gradients of the candidates, pro-

jected onto the plane S(q, r), point in different directions, i.e., there do not

exist α, β ≥ 0, at least one nonzero, such that αpA(q, r) = βpB(q, r). Thus, if

we restrict the candidates’ platforms to the two-dimensional space x̂+S(q, r),

then the pair (x̂, x̂) is a nonaligned equilibrium of the restricted game. Take

any p ∈ cone◦{pA(q, r), pB(q, r)} in the open cone generated by the candi-

dates’ projected gradients, so that the antecedent conditions of Theorem 2

hold in the restricted game. We claim that

|{i ∈ N | ∃α > 0 : pi(q, r) = αp(q, r)}|

= |{i ∈ N | ∃α < 0 : pi(q, r) = αp(q, r)}|.
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If not, then, by Theorem 2, one of the candidates has a profitable deviation

in the restricted game, and therefore the candidate has a profitable deviation

in the original game, a contradiction. This establishes the claim.

To prove the theorem, take any p /∈ span{pA, pB}, normalize so ||p|| = 1,

let

I = {i ∈ N | ∃α > 0 : ∇ui(x̂) = αp}

J = {i ∈ N | ∃α < 0 : ∇ui(x̂) = αp},

and suppose that |I| 6= |J |. Without loss of generality, suppose |I| > |J |. In

light of the above claim, a contradiction is proved if we find vectors q and r

satisfying three conditions:

(1) there do not exist α, β ≥ 0, at least one nonzero, such that αpA(q, r) =

βpB(q, r);

(2) p(q, r) ∈ cone◦{pA(q, r), pB(q, r)};

(3) the symmetry condition of Theorem 2 in the game restricted to x̂ +

S(q, r) is violated, specifically,

I = {i ∈ N | ∃α > 0 : pi(q, r) = αp(q, r)}

J = {i ∈ N | ∃α < 0 : pi(q, r) = αp(q, r)}.

We first consider the possibility of setting q = pA(p) and r = pB(p). As

noted above, we would then have pA(q, r) = pA(p) and pB(q, r) = pB(p), so

condition (1) is satisfied if pA(p) and pB(p) are linearly independent, and we

claim that is indeed the case. To show this, note that there exist unique,

nonzero α and β such that

pA = pA(p) + αp and pB = pB(p) + βp.

If pA(p) and pB(p) were linearly dependent, then there would exist γ and δ,
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at least one nonzero, such that γpA(p) + δpB(p) = 0. But then

γpA + δpB = (αγ + βδ)p,

which implies

p =

(

γ

αγ + βδ

)

pA +

(

δ

αγ + βδ

)

pB,

contradicting p /∈ span{pA, pB}. Therefore, the projected gradients of the

candidates are linearly independent, as claimed.

We cannot simply set q = pA(p) and r = pB(p), however, because then

we would have

p(q, r) = p(pA(p), pB(p)) = 0,

violating condition (2). Next, we establish the existence of a perturbation,

s, of p such that conditions (1) and (2) are both satisfied by q = pA(s)

and r = pB(s). As noted above, p(s) = p(pA(s), pB(s)) and pC(s) =

pC(pA(s), pB(s)) for each candidate, so condition (2) can be written as p(s) ∈

cone◦{pA(s), pB(s)}. To construct the perturbation, let sε = p− (ε/2)(pA +

pB) for ε > 0. Note that, by linearity of the projection mapping and

sε(sε) = 0,

p(sε) = (sε + (ε/2)pA + (ε/2)pB)(sε)

= (ε/2)pA(sε) + (ε/2)pB(sε).

Thus, p(sε) ∈ cone◦{pA(sε), pB(sε)}. Taking ε close enough to zero that

pA(sε) and pB(sε) are linearly independent, we set s = sε for the desired

perturbation.

We now wish to find perturbations, q and r, of pA(s) and pB(s) that

satisfy condition (3) as well as (1) and (2). Let voter j satisfy pj(s) = αp(s)

for some α < 0 but pj 6= αp. That is, although the voter’s gradient appears
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to point in the −p direction when projected, the voter is not a member of J .

Note the immediate implication that pj and p are linearly independent. We

will find arbitrarily close vectors v and w such that pj(v, w) = α′p(v, w) for

no α′ < 0. Note that

pj · pA(s) = (pj − pj(s)) · pA(s) + pj(s) · pA(s)

= pj(s) · pA(s)

= αp(s) · pA(s)

= α(p(s)− p) · pA(s) + αp · pA(s)

= αp · pA(s),

where the second equality follows from (pj−pj(s)) ·pA(s) = 0 and the fourth

equality from (p(s)− p) · pA(s) = 0 . Similarly, pj · pB(s) = αp · pB(s). These

equalities imply

pj · pA(s)

pj · pB(s)
=

p · pA(s)

p · pB(s)
.

Since pj and p are linearly independent, there exists t ∈ R
d such that pj ·t > 0

and p · t < 0. Define vε = pA(s) + εt and wε = pB(s)− εt for ε > 0, and note

that

pj · vε
pj · wε

>
p · vε
p · wε

.

Thus, pj(vε, wε) = α′p(vε, wε) for no α
′ < 0. That is, the gradient of voter j,

projected onto the plane spanned by vε and wε, no longer appears to point

in the −p direction. Since conditions (1) and (2) hold on open sets around

pA(s) and pB(s), we can choose ε small enough that (1) and (2) hold for vε

and wε. Since N is finite, we can perturb vε and wε a finite number of times,

if needed, so that the only voters whose projected gradients point in the

−p(vε, wε) direction are the members of J . By a similar argument, we can
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perturb vε and wε so that the only voters whose projected gradients point in

the p(vε, wε) direction are the members of I, fulfilling condition (3).

Theorem 4 Assume n is even, and assume (A1) and (A2). There does not

exist a nonaligned equilibrium.

Proof : To prove the theorem, consider any nonaligned equilibrium (xA, xB).

By Theorem 1, the candidates must locate at the same platform, say x̂ =

xA = xB. We claim that ∇uk(x̂) = 0 for some voter k, for suppose not. As

in the proof of Theorem 2, let r ∈ R
d be such that pA · r > 0 > pB · r and

such that r · ∇ui(x̂) = 0 for no voter i. Then either

{i ∈ N | r · ∇ui(x̂) > 0} or {i ∈ N | r · ∇ui(x̂) < 0}

contains at least half of the voters. Suppose, without loss of generality, that

this is true for the first group of voters, and define xε = x̂+εr for ε > 0. Since

x̂ is interior to X, we may choose ε small enough that xε ∈ X. Furthermore,

since ∇ui(x̂) > 0 for at least half of the voters, xεRx̂ for ε close enough to

zero. And, since pA ·(xε− x̂) = εpA ·r > 0, we have uA(xε) > uA(x̂) for ε close

enough to zero. But then, by assumption (A1), we have UA(xε, x̂) > UA(x̂, x̂),

as xεRx̂, so candidate A has an incentive to deviate. This contradiction

implies that ∇uk(x̂) = 0 for some voter k.

Now consider the model with k removed from the set of voters, i.e., let

the set of voters be N ′ = N \ {k}, now odd in number. Because we assumed

the voters in N had distinct ideal points, there is no voter with ideal point at

x̂ in the modified model (with k removed). Following the proof of Theorem

2, one of the candidates, say A, can move to some platform x′ such that

uA(x
′) > uA(x̂) and x′P ′x̂, where P ′ represents the strict majority preference

relation in the modified model. That is, a majority of voters in N ′ strictly

prefer x′ to x̂. Returning to the original model, that means that at least half

of the voters in N strictly prefer x′ to x̂. Therefore, we have uA(x
′) > uA(x̂)

and x′Rx̂. As above, this implies UA(x
′, x̂) > UA(x̂, x̂), a contradiction.
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Proposition 2 Assume (A1) and (A2). Assume that there exists platforms

x, y ∈ X such that xP x̃A and uB(x) > uB(x̃A) and that yPxB and uA(y) >

uA(x̃B). If (xA, xB) is an interior equilibrium, then either it is nonsatiated

or n is even and xA = x̃A and xB = x̃B.

Proof : It is sufficient to show that the only interior equilibria in which one

candidate, say A, adopts her ideal point occur when n is even and B also

adopts her ideal point. We first assume n is odd. Suppose (x̃A, xB) is an

interior equilibrium. There are three cases to check. First, x̃APxB. Letting

xP x̃A and uB(x) > uB(x̃A), candidate B can deviate to x and do strictly

better, a contradiction. Second, x̃AIxB. As in the proof of Theorem 1,

uB(xB) > uB(x̃A) and B can gain by moving toward x̃A a small amount, a

contradiction. Third, xBPx̃A. By continuity of the ui’s, there is an open set

of platforms containing xB that are majority-preferred to x̃A. So candidate

B can gain by moving toward his ideal point by a small amount, unless

xB = x̃B. If this is true, then, just as B could in the first case, candidate A

can gain by moving to a platform y such that yPxB and uA(y) > uA(xB), a

contradiction.

If n is even, then we need modify the above argument only in the second

case (x̃AIxB). Once again, the arguments given in the proof of Theorem 1

establish that uB(xB) > uB(x̃A) and either B can win outright by moving a

small amount toward x̃A or all such moves will maintain a tie. In the former

case, a small enough move by B is profitable. In the latter, by assumption

(A2) candidate B can gain by moving toward his ideal point by a small

amount, unless xB = x̃B. So it must be the case that both candidates are at

their ideal points.

Theorem 5 Assume n is odd and X is compact. Let {λm} approximate

λ∗. If there is no equilibrium in λ∗, then, for high enough m, there is no

equilibrium in λm.

Proof : If not, then we can extract a subsequence {(xmA , x
m
B )} (still indexed
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by m, for convenience) such that (xmA , x
m
B ) is an equilibrium in λm and, for

some xA, xB ∈ X, (xmA , x
m
B ) → (xA, xB). Note that uA(xA) ≥ uA(xB), for

otherwise uA(xA) < uA(xB). Then

UA(x
m
B , x

m
B |λ

m)− UA(x
m
A , x

m
B |λ

m)

= P (xmA , x
m
B |λ

m)(uA(x
m
B )− uA(x

m
A )) + P (xmB , x

m
B |λ

m)wA(x
m
B , x

m
B |λ

m)

−P (xmA , x
m
B |λ

m)wA(x
m
A , x

m
B |λ

m),

which, using (i), is positive if and only if

uA(x
m
B )− uA(x

m
A )

> P (xmA , x
m
B |λ

m)wA(x
m
A , x

m
B |λ

m)−
P (xmB , x

m
B |λ

m)

P (xmA , x
m
B |λ

m)
wA(x

m
B , x

m
B |λ

m).

By continuity, we have lim uA(x
m
B )−uA(x

m
A ) > 0, and since wA converges uni-

formly to zero by (ii), we see that the inequality must hold for high enough

m. But this, of course, contradicts the assumption that (xmA , x
m
B ) is a equi-

librium.

We claim that either xAP
∗xB or xBP

∗xA or xA = xB. Otherwise, we

have xA 6= xB and xAIxB. For each m, given platforms (xmA , x
m
B ), one of

the candidates must win with probability less than or equal to one half.

Assume without loss of generality that this is true of candidate A for infinitely

many m, and consider the subsequence (still indexed by m) for which this

holds. Thus, P (xmA , x
m
B |λ

m) ≤ 1/2 for all m. For any ε ∈ (0, 1), define xεA =

(1− ε)xA + εxB, and note that xεAP
∗xB by Lemma 1. Using continuity and

strict quasi-concavity, uA(xA) ≥ uA(xB) implies that there exists ε ∈ (0, 1)

such that

uA(x
ε
A) >

1

2
uA(xA) +

1

2
uA(xB). (5)

By (iii), P (xεA, ·|λ
m) converges to one uniformly on some open set containing
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xB, so we have P (xεA, x
m
B |λ

m)→ 1. With (ii), it follows that

UA(x
ε
A, x

m
B |λ

m)→ uA(x
ε
A). (6)

On the other hand, since uA(xA) ≥ uA(xB) and since A wins with probability

no more than one half in λm, we have

UA(x
m
A , x

m
B |λ

m) ≤
1

2
uA(x

m
A ) +

1

2
uA(x

m
B ) + wA(x

m
A , x

m
B |λ

m),

which implies

lim supUA(x
m
A , x

m
B |λ

m) ≤
1

2
uA(xA) +

1

2
uA(xB). (7)

Combining (5), (6), and (7), we have UA(x
ε
A, x

m
B |λ

m) > UA(x
m
A , x

m
B |λ

m) for

high enough m, a contradiction.

We now claim that

UA(x
m
A , x

m
B |λ

m)→ UA(xA, xB|λ
∗). (8)

If xAP
∗xB, then P (xA, xB|λ

∗) = 1, and (ii) implies that P (xmA , x
m
B |λ

m)→ 1.

In this case, the claim holds. A symmetric argument addresses the case in

which xBP
∗xA. If xA = xB, then lim uA(x

m
A ) = lim uA(x

m
B ) = uA(xA) =

uA(xB), establishing the claim.

By assumption, (xA, xB) is not an equilibrium in λ∗, so some candidate,

say A, as a profitable deviation, say x′A, i.e.,

UA(x
′

A, xB|λ
∗) > UA(xA, xB|λ

∗). (9)

We will show that for high enough m, this leads to a profitable deviation for

A in λm, a contradiction.

Note that uA(x
′
A) > uA(xB), for otherwise, we have uA(x

′
A) ≤ uA(xB),

which implies UA(x
′
A, xB|λ

∗) ≤ uA(xB). But then (9) implies that uA(xA) <
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uA(xB), contradicting our earlier claim. For ε ∈ (0, 1), define zεA = (1 −

ε)x′A+ εxB. By strict quasi-concavity, we have uA(z
ε
A) > uA(xB). By Lemma

1, P (zεA, xB|λ
∗) ≥ P (x′A, xB|λ

∗). Then we have

lim inf
ε→0

UA(z
ε
A, xB|λ

∗) (10)

= uA(xB) + lim inf
ε→0

P (zεA, xB|λ
∗)(uA(z

ε
A)− uA(xB))

≥ uA(xB) + P (x′A, xB|λ
∗)(uA(x

′

A)− uA(xB))

= UA(x
′

A, xB|λ
∗).

Using (9) and (10), choose ε small enough that

UA(z
ε
A, xB|λ

∗) > UA(xA, xB|λ
∗). (11)

Furthermore, use Lemma 1 to choose ε so that zεAP
∗xB or xBP

∗zεA.

We claim that

lim inf
m→∞

P (zεA, x
m
B |λ

m) ≥ P (zεA, xB|λ
∗). (12)

If xBP
∗zεA, then P (zεA, xB|λ

∗) = 0, and the claim clearly holds. If zεAP
∗xB,

then, by (iii), limP (zεA, x
m
B |λ

m) = 1, establishing the claim.

Finally, we claim that

lim inf
m→∞

UA(z
ε
A, x

m
B |λ

m) ≥ UA(z
ε
A, xB|λ

∗). (13)

Using uA(z
ε
A) > uA(xB), we apply (ii) and (12) to the expression

UA(z
ε
A, x

m
B |λ

m) = uA(x
m
B ) + P (zεA, x

m
B |λ

m)(uA(z
ε
A)− uA(x

m
B ))

+wA(z
ε
A, x

m
B |λ

m),
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to deduce that

lim inf
m→∞

UA(z
ε
A, x

m
B |λ

m) ≥ uA(xB) + P (zεA, xB|λ
∗)(uA(z

ε
A)− uA(xB))

= UA(z
ε
A, xB|λ

∗),

as claimed. Combining (8), (11), and (13), we find that, for high enough m,

we have UA(z
ε
A, x

m
B |λ

m) > UA(x
m
A , x

m
B |λ

m). This contradiction establishes the

theorem.

Proposition 4 Let {λm} be a sequence of additive bias models such that,

for each voter i, the sequence Fi(·|λ
m) converges weak* to the point mass on

zero. Then {λm} satisfies condition (iii) in the definition of approximation.

Proof : Suppose xAP
∗xB, and let ∆ > 0 be such that, for each voter i with

ui(xA) > ui(xB), we have ∆ < ui(xA) − ui(xB). Let G and H be open

neighborhoods around xA and xB, respectively, such that, for all y ∈ G and

all z ∈ H, ∆ < ui(y) − ui(z). Since Fi(·|λ
∗) is continuous at ∆, it follows

that Fi(∆|λ
m)→ Fi(∆|λ

∗) = 1. Therefore, for every i with ui(xA) > ui(xB),

we have

lim
m→∞

inf
y∈G,z∈H

Fi(ui(y)− ui(z)|λ
m) ≥ lim

m→∞
Fi(∆|λ

m) = 1,

and then xAP
∗xB delivers the claim.

Proposition 5 Let {λm} be a sequence of random preference models such

that λm converges to λ∗ in the weak* topology, where λ∗ puts probability one

on some θ∗ ∈ Θ. Then {λm} satisfies condition (iii) in the definition of

approximation.

Proof : Suppose xAP
∗xB. Let C ⊆ N consist of the voters i such that

ui(xA|θ
∗) > ui(xB|θ

∗). By continuity, there exist open neighborhoods G,

H, and Θ̂ around xA, xB, and θ∗, respectively, such that for all i ∈ C, all
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y ∈ G, all z ∈ H, and all θ̂ ∈ Θ̂, we have ui(y|θ̂) > ui(z|θ̂). By weak*

convergence, λm(Θ̂)→ 1. Therefore, for every i ∈ C, we have

lim
m→∞

inf
y∈G,z∈H

Pi(y, z|λ
m) ≥ lim

m→∞
λm(Θ̂) = 1,

and then xAP
∗xB delivers the claim.
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