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Abstract

Communication, even cheap talk in a pre-play stage, is commonly viewed

as important for inducing information revelation, coordination, and efficient

outcomes. Yet, many current results are based on two assumptions that seem

to be inconsistent with many interesting empirical situations: that only one

player is privately informed and that actors have no constraints limiting their

actions. We remedy both of these deficiencies by specifying a more general

model of cheap talk with two-sided incomplete information and bounded ac-

tion spaces. We find that, typically, full information transmission is possible

even with two-sided private information if action spaces are unbounded. On

the other hand, imposing bounds on the action spaces of the actors can reduce

or even completely prevent information transmission and coordination. The

nature of these results, in turn, depend on whether actions are substitutes (e.g.,

public goods provision) or complements (e.g., an arms race). Thus, our results

emphasize that the resource constraints of players and the nature of the strate-

gic interaction can have a significant effect on the potential gains offered by

pre-play communication.

JEL Classification: C72

Keywords: cheap talk, strategic complementarities, strategic substitutes, per-

fect Bayesian equilibrium



1 Introduction

It is often asserted that one effective way to overcome potential obstacles to good

policy outcomes is to create venues for political and economic entities to communi-

cate in a less adversarial fashion (Austen-Smith and Feddersen, 2002; Doraszelski,

Gerardi, and Squintani, 2003). Successful communication can induce coordination

even between actors with different preferences—be they nation-states, local govern-

ments, interest groups, regulators, political parties, firms, or private citizens—to avoid

harmful actions or to engage in synergistic activities. For example, nation-states may

forestall expensive arms races by committing to nonaggression, local governments

may maintain water quality by not polluting, political candidates may preserve their

reputations by eschewing negative advertising, or oligopolistic firms may avoid costly

investments that will reduce their financial returns. Analogously, an agency may

change a regulation if a firm convinces it that it has the required technology to make

it successful or an activist group may endorse purchasing a firm’s products if the

corporation demonstrates environmental and social responsibility.

In this paper, we focus on the idea that pre-play communication, and particularly

“cheap talk” (i.e., costless talk with unverifiable claims), can produce improved re-

sults via coordination of strategic action. Of course, it is well-known that in certain

situations, notably when there is one-sided incomplete information and preference

disparity is not too great, a privately informed actor who sends cheap-talk messages

to a decision-maker can expand the set of achievable outcomes and produce a more

efficient result than would otherwise occur (Austen-Smith, 1994; Crawford and So-

bel, 1982; Farrel, 1988, 1993; Farrel and Gibbons, 1989; Krishna and Morgan, 2001

a,b). While encouraging, we worry that such findings do not speak directly to many

empirical situations of interest where pre-play communication is an option.

Specifically, there are at least two reasons to question whether these standard

results have much to offer in many relevant situations. First, the possibility that

both sides in a negotiation are privately informed is not incorporated. The strategic

context where each side simultaneously reveals information may be much more com-

plicated than in the standard sender-receiver world; in the multiple sender situation,

each player must worry what impact her message will have conditional on the other’s
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private information. Hence, standard results cannot completely capture situations

such as nations being privately informed about their ability to develop cost-effective

weaponry, local governments having unique data on their citizenry’s support for en-

vironmental quality, political candidates possessing polling results about the efficacy

of negative advertising, firms holding assessments about their potential returns from

new technological investments, or activist groups and corporations privately knowing

their own commitment to keeping a bargain.

Second, limits on how much or how little players can do in pursuit of their objec-

tives are not incorporated, as an unbounded action space is typically assumed. While

unboundedness is a general assumption and allows for maximal information trans-

mission, it is unrealistic for most interesting empirical situations. Indeed, permitting

negative actions is often unintuitive, as an actor’s decision is commonly thought of

as the choice of what, if any, nonnegative action to take, such as how much money

to expend or effort to exert. Conversely, the absence of an upper bound assumes

no resource constraints (e.g., budgets), technological limits, or institutional restric-

tions (e.g., laws defining acceptable behavior). Hence, incorporating limits on the

choices of actors, particularly in the more complicated world of two-sided private in-

formation, would seem imperative for determining the potential benefits of pre-play

communication.

In short, extrapolating from models with one-sided incomplete information with an

unbounded action space to make claims about what happens when there is two-sided

private information with limitations on actions is problematic. Can communication

still lead to beneficial information transmission and coordination? To answer this

question, we model pre-play communication as cheap talk with two-sided incomplete

information and bounded actions. Specifically, we suppose that the two players first

costlessly send messages and then simultaneously act. As in the standard cheap talk

model, each player has private information about her most preferred action and the

actions of each player affect the outcome for the other. A key component in our

results is the extent to which each player’s action impacts the other player’s utility.1

We first solve the baseline case of the model in which the action spaces of the players

1In contrast to standard cheap talk models, the preference discrepancy between the players is
not a key factor for information transmission in our model.
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are unbounded. We then solve alternative cases given various assumptions about how

the action spaces are bounded. In each instance, we classify the extent and direc-

tion in which each player’s action is impacted by the other’s choice by an externality

parameter measuring a player’s evaluation of the other’s expectation of her own opti-

mal action on the player’s optimal action. As in Baliga and Morris (2002), a negative

parameter signifies strategic complementarities, by which each player’s best response

increases in the other player’s action, such as when activists and firms coordinate on

social responsibility. A positive parameter captures strategic substitutes, by which

each player’s best response decreases in the other player’s action, such as classic in-

stances of public goods provision, e.g., when one nation contributes less to collective

security when another contributes more.

Broadly, our findings are twofold. First, as in models with one-sided cheap talk,

with unbounded action spaces communication can lead to efficient outcomes. Coor-

dination is only precluded in the rare instance when the interaction of the externality

parameters is one. However, as the no information transmission situation is knife-

edged, slight variations in the interaction of the externality parameters can make full

information revelation and coordinated action possible. Second, imposing bounds on

the action spaces of the actors can, in some cases, reduce or even completely prevent

information transmission and coordination, with the more limited player being dis-

advantaged relative to the other whether or not there is an informative equilibrium.

Furthermore, the effect of such constraints differs notably depending on whether

substitutes or complements are being considered. With substitution, requiring that

actions be nonnegative precludes full information transmission and, if the externality

parameters of both players are not too large, assures no information transmission at

all. With strategic complements, full information revelation is still possible when the

interaction of the two externality parameters is small, but there is no equilibrium

when this interaction is large. If we further restrict the actions of players in the case

of strategic complements by assuming limits on the upper bound, information trans-

mission becomes more tenuous and the more constrained player is disadvantaged.

These results have significant implications for the possibility that communication

induces better informed actions and greater coordination. Most notably, pre-play

communication is likely to be less successful than previous results may have implied.
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Additionally, our findings indicate that pre-play communication is likely more effi-

cacious for situations defined by strategic complementarities than by substitutions

although, even in the former instance, it is quite likely that effective information

transmission will not take place. As for instances of strategic substitutes, such as

public goods provision, pre-play communication may simply be ineffectual.

By combining two-sided incomplete information with bounded action spaces, our

analysis contributes to the extensive literature on cheap talk and communication

initiated by Crawford and Sobel (1982). While there have been many important

additions and extensions to Crawford and Sobel’s work (Farrel and Gibbons, 1989;

Rabin, 1990, 1994; Austen-Smith, 1994; Battaglini, 2002; Aumann and Hart, 2003),

none have taken our tact of integrating the possibility that both sides who are trying

to communicate have incomplete information and face limits on the action space that

they have available.2

In the main body of our analysis, we first present and solve our model with two-

sided incomplete information with no action space restrictions. We then solve for

situations with alternative assumptions about the action spaces. The final section

concludes by discussing the implications of our results for understanding the useful-

ness of pre-play communication.

2 Communication with Unbounded Action Spaces

We begin by defining our cheap talk model of two-sided incomplete information. We

assume that there are two players, i = 1, 2, each with an infinite set of possible

actions, Yi, with Y = Y1×Y2. Each player i is one of an infinite set of possible types,

Ωi, with Ω = Ω1 × Ω2. The prior over each player’s type space, Ωi, is πi ∈ ∆(Ωi),

and each player’s utility function is ui : Y × Ωi → R. To describe the cheap talk

stage of the game, we assume that each player i has a continuous message space Mi.

Define a messaging strategy for player i by µi : Ωi →Mi and beliefs for player i as

λi : Mj → ∆(Ωj) where i 6= j. A pure strategy for player i for a choice of action is a

2For a survey, see Farrel and Rabin (1996); for an evolutionary approach, see Kim and Sobel
(1992); and to see the effects of a communication stage in particular games, see, for example,
Palfrey and Rosenthal (1991), Banks and Calvert (1992), and Austen-Smith and Banks (2000).
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function si : Mi ×Mj × Ωi → Yi.

For expositional simplicity, we assume throughout the paper that Ωi = [0, 1] and

that players share a common prior that each ωi is drawn from a uniform distribution

on [0, 1]. Moreover, we assume that ω1 and ω2 are drawn independently.3 We also

assume that each player’s message space is the unit interval, so Mi = [0, 1]. We will

analyze the perfect Bayesian equilibria of this game, where (µ1, µ2, s1, s2, λ1, λ2) is a

perfect Bayesian equilibrium if each player is playing optimally at all her information

sets, given the other player’s strategy, and beliefs are updated using Bayes’ rule

whenever possible.

We first solve this game with no restrictions on the actions spaces of the players.

Thus, we assume that each player can take any action on the real line, i.e., Yi = R
for all i. Our general assumption about utilities is that

u1(y1, y2, ω1) = g(y1 + αy2 − ω1) (1)

u2(y1, y2, ω2) = g(y2 + βy1 − ω2), (2)

where α, β ∈ R \ {0} and the function g is strictly concave and symmetric about

0.4 As foreshadowed, α and β are externality parameters which capture the effect of

one player’s chosen action on the other player’s utility given her type and action (we

exclude the case when both parameters are zero because the game is equivalent to

that without cheap talk). Thus, for example, if α > 1, a marginal change in player

2’s action affects player 1’s payoff more than a marginal change in player 1’s action;

if α = 1, these changes are equivalent; and, if α < 1, a marginal change in player 1’s

action has a greater affect on her payoff than a marginal change in player 2’s action.

In turn, αβ captures the marginal impact that one player’s expectation of the other

player’s expectation of her optimal action has on her optimal action, i.e., it represents

how much each player’s optimal action must be adjusted given the changes in that

player’s expectation of the other player’s expectation of her optimal action given the

3Independence is not crucial, as our results hold net of types being perfectly correlated. Assuming
a uniform distribution on the real line captures the so-called situation of diffuse views where a player
with some information concerning the state of the world is best off assuming that the likelihood of
the other player opting for a particular option is a uniformly distributed random variable over the
unit interval (Morris and Shin, 2003).

4Thus, g attains its maximum at 0.
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equilibrium messaging strategy.

To establish when full communication is possible, we follow Crawford and Sobel

by focusing on partitional equilibria, as the underlying logic defining such equilibria

is consistent with our analysis. Specifically, concentrating on partitional equilibria

captures a four-step process in which each player sends a message representing the

subset of the type space containing her type and receives a corresponding message

from the other player, infers the subset of the partition that the other player lies in,

uses this inference and the message she gives to the other player to form an expectation

of optimal actions taken by possible types of the other player, and chooses an optimal

action based on her type.5

We will show that an infinite number of partitional equilibria exist for any pre-play

communication game with αβ 6= 1, ranging from completely uninformative “bab-

bling” equilibria to fully revealing equilibria in which both players are completely

informed about the other player’s type. Except for the knife-edged situation where

the marginal effects of each player’s expectation of the other’s expectation of her own

action on her optimal action is one, any partitional equilibrium with finite size is

Pareto-dominated by a fully revealing equilibrium.

We begin with some notation and definitions. For i = 1, 2, let Ai = {Ai
γ}γ∈Γ

be a partition of the unit interval into subintervals, with index set Γ. That is, for

i = 1, 2,
⋃

γ∈Γ Ai
γ = [0, 1] and Ai

γ

⋂
Ai

γ′ = ∅, for all γ 6= γ′ ∈ Γ, and each Ai
γ is a

convex set. We refer to any such Ai as an interval partition. The index set Γ may be

finite, countably infinite, or uncountably infinite.6 Here we permit elements of Ai to

be singletons. All other elements of Ai are intervals, which may or may not contain

their endpoints. Let di(γ) be the length of the interval Ai
γ. Note that di(γ) is zero if

and only if Ai
γ is a singleton.

These partitions serve as the basis for the messaging strategy for each player. In

5Note that each player’s messaging strategy should be consistent with her behavioral strategy,
the other player’s messaging strategy, and her posterior beliefs given the other player’s messaging
strategy. Also recognize that, as usual in any form of partitional rational expectations equilibrium,
the type located at the boundary of two partition subsets must be indifferent between sending
messages for the lower or the upper partition subsets and between the corresponding expected
optimal actions induced.

6It is possible to obtain a more general result for arbitrary measurable partitions of the unit
interval at the expense of more complicated notation.
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order to define this messaging strategy, for i = 1, 2 and for every γ ∈ Γ, choose a

point ai(γ) ∈ Ai
γ.

7 Thus, the point ai(γ) is a representative element of Ai
γ for each

γ ∈ Γ. For x ∈ [0, 1], define γi(x) to be the value of γ such that x ∈ Ai
γ. As Ai is a

partition, a unique such γ must exist and, as such, this function is well-defined. With

this, we can define the messaging strategy for player i by

µi(ωi) = ai(γi(ωi)). (3)

In other words, type ωi of player i sends the representative element of the interval in

Ai which contains ωi. It is important to note that this messaging strategy implies

that all types in a given interval in Ai send the same message.

Next, we turn to the player’s beliefs after observing a message. For x ∈ [0, 1], a

point mass δx is the probability measure that puts probability 1 on x and probability

0 on all other points.8 Integration with respect to δx is the same as evaluation at

x. For player j 6= i, we define j’s belief after receiving message mi as follows. If

di(γi(mi)) = 0, then λj(mi) = δmi
. If not, then

λj(ωi|mi) =





1/di(γi(mi)) if ωi ∈ Ai
γi(mi)

0 otherwise.
(4)

In this expression, Ai
γi(mi)

is the interval of types that would be expected to send the

message mi and di(γi(mi)) is the length of the interval. It should be clear that this

belief is consistent with the messaging strategy in equation (3) via Bayes’ Rule. The

belief also specifies that a message off the equilibrium path is interpreted as being

sent by a type of player i in the interval which contains the message.

Finally, we define the strategies of the players in the second stage, when they

choose actions having observed the cheap talk messages of the first stage. For messages

m1 and m2, let λ2(ω1|m1) and λ1(ω2|m2) be given by equation 4. Define the following

strategies:

s1(ω1,m1,m2) = ω1 − α

[
Eλ1ω2 − βEλ2ω1

1− αβ

]
, (5)

7This is possible as an application of the Axiom of Choice.
8That is, the CDF of δx is 0 if ω < x and 1 if ω ≥ x.
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and

s2(ω2,m1,m2) = ω2 − β

[
Eλ2ω1 − αEλ1ω2

1− αβ

]
, (6)

where

Eλj
ωi =

∫

[0,1]

ωi dλj =

∫

Ai
γi(mi)

ωi.

Note that, in particular, if λj = δmi
, then Eλj

ωi = mi.

Proposition 1 Suppose that αβ 6= 1. For every pair of interval partitions (A1,A2),

the strategies and beliefs given by equations 3, 4, 5, and 6 form a perfect Bayesian

equilibrium. Thus, there exists a continuum of equilibria to this game.

Proof. Suppose that αβ 6= 1 and fix a pair of interval partitions (A1,A2). Clearly,

the beliefs in equation 4 are consistent with applying Bayes’ Rule to the messaging

strategies in equation 3. We now show that the strategies given in equations 5 and

6 are sequentially rational. We first consider the choice of action for player 1 with

type ω1, having observed m1 and m2 and given λ1(ω2|m2). Player 1’s expected utility

of playing action y1 is given by

Eλ1u1 =

∫
g(y1 + αs2(ω2,m1,m2)− ω1) dλ1.

In order to maximize this expression, we use Leibniz’s rule as follows:

∂

∂y1

Eλ1u1 =

∫
g′(y1 + αs2(ω2,m1,m2)− ω1) dλ1 = 0.

If we let

z2 = −β

[
Eλ2ω1 − αEλ1ω2

1− αβ

]
,

then, referring back to equation 6, we can write the first order condition as

∂

∂y1

Eλ1u1 =

∫
g′(y1 + α(z2 + w2)− ω1) dλ1 = 0.

As g is strictly concave, it is straightforward to check that the second order condition

is satisfied. As g is symmetric around 0, it is easy to see that a solution will always
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exist and that, at the solution, it must be that

y1 − ω1 + α(z2 + Eλ1w2) = 0.

Substituting, we can write the best response of player 1 as

y∗1(ω1,m1,m2) = ω1 − α

[
(1− αβ)Eλ1ω2 − βEλ2ω1 + αβEλ1ω2

1− αβ

]
,

which shows that the strategy given by equation 5 is a best response for player 1. A

similar argument shows that player 2’s strategy is a best response.

Having thus established that strategies at each information set in the choice game

are sequentially rational, we must establish that the (truthful) messaging strategies

given by equation 3 are optimal. To show this, suppose that ω1 ∈ A1
γ1(m1). That

is, the type of player 1 is such that she is expected to send message m1. In order

to establish our claim, we will show that player 1 is indifferent across all possible

messages, for all possible types of player 2. To show this, consider the difference in

utility for player 1 of sending m′
1 instead of m1, generating λ2(ω1|m′

1) = λ′2 and then

playing y′1 instead of y1:

Eλ1u1(m
′
1)− Eλ1u1(m1) =

∫
g(y′1 + αs2(ω2,m

′
1,m2)− ω1) dλ1

−
∫

g(y1 + αs2(ω2,m1,m2)− ω1) dλ1.

From the above, it is clear that the optimal choice for y′1 is given by y′1 = s1(ω1,m
′
1, m2)

from equation 5. Substituting, we see that

y′1 + αs2(ω2,m
′
1,m2)− ω1 = ω1 − α

[
Eλ1ω2 − βEλ′2ω1

1− αβ

]
+ αω2

− αβ

[
Eλ′2ω1 − αEλ1ω2

1− αβ

]
− ω1

= α

[
ω2 −

Eλ1ω2 − βEλ′2ω1

1− αβ
− βEλ′2ω1 − αβEλ1ω2

1− αβ

]

= α

[
ω2 − Eλ1ω2 − αβEλ1ω2

1− αβ

]
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= α[ω2 − Eλ1ω2].

It follows that

Eλ1u1(m
′
1)− Eλ1u1(m1) = 0,

and so player 1 is indifferent over all possible messages. A similar argument applies

to player 2. Thus, we have established that the interval partitions (A1,A2) support

an equilibrium.

This Proposition establishes that a a continuum of equilibria exist. The one

equilibrium of particular interest included in this continuum is a fully revealing one

in which each player truthfully reveals her type.9 This equilibrium is given by

µi(ωi) = ωi (7)

s1(ω1,m1,m2) =
ω1 − αm2

1− αβ
(8)

s2(ω2,m1,m2) =
ω2 − βm1

1− αβ
(9)

λj(mi) = δmi
. (10)

In addition to being maximally informative, this equilibrium is also first-best in that,

regardless of type, the equilibrium payoff of both player is their highest possible util-

ity (namely zero). This is because, with full information, each player can perfectly

compensate for the effect of her opponent’s actions on her utility. Thus, the play-

ers can successfully coordinate their actions voluntarily. Clearly, this equilibrium is

Pareto-superior to all other equilibria.

We now show that information transmission and coordination cannot occur when

each player’s expectation of the other’s action leads to behavior that completely

offsets. To get a sense of why this is true, note that the equilibrium actions given by

equations (8) and (9) go to infinity as αβ goes to one. Thus, unlike Proposition 1 in

which players can always choose extreme enough actions so that they are indifferent

9Because any one-to-one messaging strategy is fully revealing, there are actually many fully
revealing equilibria that differ only by the messaging strategy. Throughout this paper, we focus on
the canonical fully revealing equilibrium in which each player truthfully reports her type.
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over their possible messages, if αβ = 1, then the messages of players are not credible

because they always want to choose the highest or lowest message possible. Therefore,

no information can be transmitted in equilibrium. Moreover, except in the particular

case α = β = 1, if αβ = 1, then the best response of players is to choose ever more

extreme actions, and, hence, there is no equilibrium at all. If α = β = 1, then each

player will want to compensate exactly for her action and her own type. This turns

out to be possible in a babbling equilibrium in which each player’s action is offset be

a specific amount. This is expressed in the following Proposition.

Proposition 2 Suppose that αβ = 1. If α 6= 1 or β 6= 1, then no equilibrium

exists. If α = β = 1, then only babbling equilibria exist. In any such equilibrium,

y∗1(ω1) = ω1 − δ − 1
2

and y∗2(ω2) = ω2 + δ for some δ ∈ R.

Proof. Suppose that αβ = 1 and fix a pair of interval partitions (A1,A2). Consider

the choice of action for player 1 with type ω1, having observed m1 and m2 and given

λ1(ω2|m2). Player 1’s expected utility of playing action y1 is given by

Eλ1u1 =

∫
g(y1 + αs2(ω2,m1,m2)− ω1) dλ1,

with first order condition

∂

∂y1

Eλ1u1 =

∫
g′(y1 + αs2(ω2,m1,m2)− ω1) dλ1 = 0.

Let z1 solve ∫
g′(z1 + αs2(ω2, m1, m2)) dλ1 = 0.

Nothing in this expression depends on ω1, so z1 is independent of ω1. Therefore,

player 1’s best response must satisfy y1 = z1 + ω1. Likewise, player 2’s strategy must

satisfy

s2(ω2,m1,m2) = z2 + ω2

for some z2 that does not depend on ω2. Thus, player 1’s best response solves

∂

∂y1

Eλ1u1 =

∫
g′(y1 − ω1 + α(z2 + ω2)) dλ1 = 0

11



and, as before, must solve

y1 − ω1 + αz2 + αEλ1w2 = 0.

Similarly, player 2’s action must solve

y2 − ω2 + βz1 + βEλ2w1 = 0.

Using the fact that y1 = z1 + ω1 and y2 = z2 + ω2, and substituting, we have

z1 + α(−βz1 − βEλ2w1) + αEλ1w2 = 0.

Because αβ = 1, this simplifies to

Eλ2w1 = αEλ1w2.

Making the other substitution and simplifying yields

Eλ1w2 = βEλ2w1.

The only way that these last two equations can be satisfied for every pair of intervals

in (A1,A2) is if α = 1 and β = 1 and both interval partitions are just the trivially one

element partition. Otherwise, there is no equilibrium. In the former case, Eλ2w1 =

Eλ1w2 = 1/2. The first order condition becomes

z1 + z2 + 1/2 = 0.

So setting z2 = δ, the first order conditions can only be satisfied by y∗1(ω1) = ω1−δ− 1
2

and y∗2(ω2) = ω2 + δ for some δ ∈ R. This completes the proof.

Hence, cheap talk does not help when a player’s action is expected to be exactly

compensated by the other player’s expectation of her own action. The equilibrium

obtained from the entire game including the communication stage when αβ = 1 is

identical to the underlying Bayesian Nash equilibrium for the game without communi-

cation. As each player knows about the possibility for deception, even a truth-telling
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player will not be believed in equilibrium.

3 Communication with Bounded Action Spaces

The previous results assume that the action spaces of players are not bounded. The

absence of bounds signifies that there are no meaningful constraints on what players

can do in pursuit of their interests–nations in an arms race have no limits on what

they can spend, agencies have no budgetary or statutory restrictions, candidates have

infinite campaign funds and no regulatory guidelines, etc. Incorporating limitations

on the action spaces of players reduces information transmission, although the extent

of this effect varies considerably depending on whether actions are substitutes or

complements.

In order to obtain closed form solutions, throughout the remainder of the paper

we assume the following functional form for utilities:

u1(y1, y2, ω1) = −(y1 + αy2 − ω1)
2 (11)

u2(y1, y2, ω2) = −(y2 + βy1 − ω2)
2. (12)

Using the more general functional form for utilities from the previous section would

yield qualitatively similar results.

We note for later use that in an unconstrained setting the best response conditions

for the players are given by

y1 = ω1 − αEλ1y2 (13)

y2 = ω2 − βEλ2y1. (14)

Thus, all other things being equal, if α is positive (negative), then higher actions by

player 2 lead to lower (higher) actions by player 1.

3.1 Nonnegative Action Spaces

We begin by considering the case in which each player’s action space is bounded below

by zero. Later we will examine the cases in which one or both players’ action spaces
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are also bounded above. Specifically, we assume that y1 ≥ 0 and y2 ≥ 0. As such,

each player’s action is interpretable as the amount of money to contribute, arms to

build, public goods to provide, effort to make, and the like. We distinguish between

strategic complementarities (e.g., an arms race), where α and β are both negative and

each player’s action is an increasing function of the other player’s best response, and

strategic substitution (e.g., public goods provision), where α and β are both positive

and each player’s action is a decreasing function of the other player’s best response.10

For our analysis, it is helpful to define these two strategic situations as follows.

Definition 1 A Bayesian game has strategic substitutes for both players if α > 0 and

β > 0 and strategic complementarities for both players if α < 0 and β < 0.

Interestingly, and as implied, while limiting actions to be nonnegative significantly

reduces the ability of communication to enhance efficiency, the effects differ greatly

depending upon whether there is substitution or complementarity. As we show, for

substitutes, cheap talk often does not aid coordination on efficient outcomes but,

depending upon the externality parameters, it may do so for complements. Hence,

for example, using communication for public goods provision may be less useful than

when there is a desire to provide more as long as one’s partner is cooperating.

3.1.1 Strategic Substitution

Proposition 3 shows how restricting actions to be nonnegative limits the possibility

of information transmission for the case of strategic substitutes.

Proposition 3 Suppose that Y1 = Y2 = [0,∞). Suppose also that y1 and y2 are

strategically substitutable, i.e., α > 0 and β > 0.

10By applying the logic developed for the case where both α and β are positive, it is easily seen
that only babbling equilibria exist when α and β have different signs.
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1. If α ≥ 2, then there exists an equilibrium given by

µ1(ω1) = ω1 for all ω1

µ2(ω2) =





1
α

if ω2 ∈ [0, 2
α
]

ω2 if ω2 ∈ ( 2
α
, 1]

s1(ω1,m1,m2) = 0

s2(ω2, m1, m2) = ω2

λ1(ω2|m2) =





U [0, 2
α
] if m2 ∈ [0, 2

α
]

δm2 if m2 ∈ ( 2
α
, 1]

λ2(ω1|m1) = δm1 for all m1,

There is no more informative equilibrium of this kind.

2. If β ≥ 2, then there exists an equilibrium given by

µ1(ω1) =





1
β

if ω1 ∈ [0, 2
β
]

ω1 if ω1 ∈ ( 2
β
, 1]

µ2(ω2) = ω2 for all ω2

s1(ω1, m1, m2) = ω1

s2(ω2,m1,m2) = 0

λ1(ω2|m2) = δm2 for all m2,

λ2(ω1|m1) =





U [0, 2
β
] if m1 ∈ [0, 2

β
]

δm1 if m1 ∈ ( 2
β
, 1]

There is no more informative equilibrium of this kind.

3. If α < 2 and β < 2, then only babbling equilibria exist.
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Proof. We begin with some preliminary analysis. Suppose that α > 0 and β > 0 and

fix a pair of interval partitions (A1,A2). Consider the choice of action for player 1

with type ω1, having observed m1 and m2 and given λ1(ω2|m2) and an arbitrary

strategy s2(ω2,m1,m2). Player 1’s expected utility of playing action y1 is given by

Eλ1u1 =

∫
−(y1 + αs2(ω2,m1,m2)− ω1)

2 dλ1.

Maximizing this expression with the constraint y1 ≥ 0 gives the following Kuhn-

Tucker condition:

y1 =





0 if ω1 ≤ αEλ1y2

ω1 − αEλ1y2 if ω1 > αEλ1y2.

A similar result holds for player 2.

If α ≥ 2, then it is straightforward to verify that the strategies and beliefs given

above form an equilibrium. In order to establish that there is no more informative

equilibrium of this kind, suppose not. That is, suppose there is such an equilibrium,

with strategies denoted by s̃1 and s̃2. In order to be strictly more informative, such

an equilibrium must be fully revealing for all ω1 and for all ω2 ∈ (2/α, 1], and must

involve player 2 sending at least two different messages for ω2 ∈ [0, 2/α]. Suppose

that ω1 = 0. Then m1 = 0 and, in any equilibrium, y1 = 0 and y2 = ω2. In this

case, the (ex ante) expected utility of player 1 is E[−(0 + αω2 − 0)2] = E[−(αω2)
2].

On the other hand, if ω1 = 1 and player 1 sends the equilibrium message m1 = 1,

then, because player 2 is sending at least two different messages for ω2 ∈ [0, 2/α],

there is a message sent with positive probability for which player 1’s equilibrium

action is positive. Given this, if ω1 = 0 and player 1 deviates to play m1 = 1, then

in the action phase player 2 plays y2 = ω2 − βy1 which is either equal to or, with

positive probability, strictly less than ω2. Thus, this deviation gives player 1 higher

expected utility, so there can be no more informative equilibrium than that given in

the proposition. A similar argument establishes the result for β ≥ 2.

Finally, we must show that no non-babbling equilibrium exists if α < 2 and β < 2.

So, suppose that α < 2 and β < 2 and that a non-babbling equilibrium exists. It is

easy to show, based on the argument above, that there is no equilibrium in which a

player always plays action yi = 0. It is also true that there is no equilibrium in which
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a player never strictly prefers the zero action. Therefore, in any equilibrium, each

players must play the zero action with positive probability and positive actions with

positive probability. In particular, we can suppose, without loss of generality, that m0
1

is the equilibrium message for type ω1 = 0 of player 1 and there is some other message

m′
1 sent in equilibrium by some other type ω1 such that Eλ2(m′

1)y1 > Eλ2(m0
1)y1. It

follows that in any equilibrium, for all ω2,

y2(ω2,m
′
1) < y2(ω2,m

0
1).

But the expected equilibrium payoff for type ω1 = 0 of player 1 is E[−(0+αy2(ω2,m
0
1)−

0)2] = E[−(αy2(ω2,m
0
1))

2], while the expected payoff of sending message m′
1 is

E[−(αy2(ω2,m
′
1))

2]. Therefore, this is a profitable deviation, and so no non-babbling

equilibria exist.

Thus, if the externality parameters of both players are not too large, there are

only babbling equilibria.11 If the externality parameter of a player is large enough,

though, there is an equilibrium in which that player fully reveals her type and always

chooses the zero action. This equilibrium is consistent with a major firm opening up

a new market and inducing a rival firm to forgo entry or, in a non-market context,

a situation in which one interest group lobbies a regulator and gains a preferential

decision while the other does not participate in lobbying and accepts the resulting

rules.

3.1.2 Strategic Complementarity

Unlike substitutability, fully informative cheap talk is possible in some cases with

strategic complementarity. In particular, our results depend on how much the optimal

actions of each player are influenced by the other, i.e., whether αβ ≥ 1 (large effect)

or αβ < 1 (small effect). While fully revealing cheap talk is possible when αβ < 1,

no equilibrium exists when αβ ≥ 1. Put differently, full information revelation is

possible if players’ actions are less than completely offset by the best response of the

11As characterizing the babbling equilibria in this case involves solving a fourth-order polynomial,
it is not presented here.
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other players. Otherwise, there is no information revelation and a regressive process

induces ever more extreme choices, so no equilibrium exists.

Proposition 4 Suppose that Y1 = Y2 = [0,∞). Suppose also that y1 and y2 are

strategic complements, i.e., α < 0 and β < 0.

1. If αβ < 1, then for every pair of interval partitions (A1,A2), the strategies and

beliefs given by equations 3, 4, 5, and 6 form a perfect Bayesian equilibrium.

2. If αβ ≥ 1, then no equilibrium exists.

Proof. Suppose α < 0 and β < 0. If αβ < 1, then it is clear that equations 5

and 6 are always positive and, thus, the arguments in Proposition 1 go through.

Consequently, the equilibria identified in that Proposition exist here.

If αβ ≥ 1, then the argument is similar to the proof of Proposition 2. Given that

both players’ actions are nonnegative, inspection of the utility functions leads to the

obvious implication that yi ≥ ωi for i = 1, 2. Writing yi = zi + ωi, as in the proof of

Proposition 2, this implies that zi ≥ 0 for i = 1, 2. Following the argument there, we

have the equilibrium condition

z1 − αβz1 − αβEλ2w1 + αEλ1w2 = 0,

which simplifies to

(1− αβ)z1 − αβEλ2w1 + αEλ1w2 = 0.

As α < 0, β < 0, z1 ≥ 0, and αβ ≥ 1, the first term in this equation is less than or

equal to zero and the second and third terms are both negative. Thus, the equilibrium

condition does not hold, so no equilibrium exists.

To gain some intuition for this case, recall the fully revealing equilibrium from

the unbounded case given by equations (8) and (9). The numerator of each of these

expressions is positive, as α < 0 and β < 0, and the sign of the denominator depends

on whether αβ is greater or less than one. If αβ < 1, then both of these expressions are

always positive and so the constraints on the actions spaces of players are not binding.

If αβ > 1, however, the constraints are binding and no equilibrium is possible. Indeed,
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in this case there is a multiplier effect by which one choice of optimal action yields a

larger choice for the opponent in monotonic fashion (for a similar result, see Baliga

and Sjöström (2004)). Thus, no equilibrium exists. Each player wants to outdo the

other player’s action and, as a result, always has an incentive to deviate and, due

to this multiplier effect, chooses an always higher action. Interestingly, such a spiral

effect of each player’s expectation of the other player’s action on her own action would

seem to characterize the arms race engaged in by the U.S. and the Soviet Union during

the Cold War.

3.2 Nonnegative Action Space with Upper Bounds

To build more realism into our analysis, we next incorporate the possibility that

actors face constraints that restrict how much they can contribute in pursuit of their

objective. We do this by further restricting the action space for strategic complements

so that is bounded above as well as below.12 Specifically, we focus on (1) how our

results about information revelation are affected; and (2) how, given the effects on

expected actions, a player with an upper bounded action space is advantaged or

disadvantaged vis-à-vis a player with an unbounded or less severely constrained action

space. Once again, the key factor for our analysis is how much each player’s optimal

action is influenced by the other, i.e., whether the combined effect is greater than or

less than one.

3.2.1 Small Combined Effect

We first analyze the situation where αβ < 1, so that the combined effect of each

player’s evaluation of the other player’s expectation of her own optimal action on the

player’s optimal action is less than 1. We begin by restricting the first player’s action

space at zero and y1, so that y1 ∈ [0, y1], and the second player’s action space only

at zero. When we do this, a fully revealing equilibrium is possible but, in contrast

to the situation with no upper bound, no longer assured. Full revelation depends on

whether the upper bound restricts the believability of player 1’s messaging. When it

12For strategic substitution, we do not need to discuss the impact of imposing upper bounds on
the actions spaces because the lower bounds already significantly hinder informational efficiency.

19



does not, full coordination through communication and a fully revealing equilibrium

will exist; if the restricted upper bound is small enough to impact the believability

of player 1’s message, the most informative equilibrium is only partially informative.

Furthermore, when a partially informative equilibrium is most informative, player 1

is disadvantaged relative to player 2 because she always reveals her type to player 2

but only some types of player 2 reveal their type, with the others sending a pooling

message. Thus, depending on the benefits of partial information revelation, heavily

resource constrained actors may be loathe to engage in pre-play communication to

try and avert bad outcomes, whether it be an arms race, negative campaigning, or a

technology ramp-up between firms given the possible distributional implications.

Proposition 5 Suppose that Y1 = [0, y1] and Y2 = [0,∞). Suppose also that that y1

and y2 are strategic complements, i.e., α < 0 and β < 0, and that αβ < 1.

1. If y1 ≥ 1−α
1−αβ

, then there exists a fully revealing equilibrium given by

µi(ωi) = ωi

s1(ω1,m1,m2) =
ω1 − αm2

1− αβ

s2(ω2,m1,m2) =
ω2 − βm1

1− αβ

λj(mi) = δmi
.

2. If 2−α
2−2αβ

< y1 < 1−α
1−αβ

, then there exists a maximally informative equilibrium

given by

µ1(ω1) = ω1 for all ω1

µ2(ω2) =





ω2 if ω2 ∈ [0, τ)

τ+1
2

if ω2 ∈ [τ, 1]

s1(ω1,m1,m2) =





ω1−αm2

1−αβ
if m2 ∈ [0, τ)

ω1 + 2αβω1−α(1+τ)
2−2αβ

if m2 ∈ [τ, 1]
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s2(ω2,m1,m2) =





ω2−βm1

1−αβ
if m2 ∈ [0, τ)

ω2 + αβ(1+τ)−2βm1

2−2αβ
if m2 ∈ [τ, 1]

λ1(ω2|m2) =





δm2 if m2 ∈ [0, τ)

U [τ, 1] if m2 ∈ [τ, 1]

λ2(ω1|m1) = δm1 for all m1,

where τ = 2−α+2(αβ−1)y1

α
.

Proof. It is straightforward to verify that the strategies and beliefs given above

form equilibria for the two cases. In order to establish that the second equilibrium is

maximally informative, we must show that there is no more informative equilibrium

than the one specified above. Suppose there is such an equilibrium, with strategies

denoted by s̃1 and s̃2. In order to be strictly more informative, such an equilibrium

must be fully revealing for all ω1 and for all ω2 ∈ [0, τ), and must involve player 2

sending at least two different messages for ω2 ∈ [τ, 1]. So, without loss of generality,

assume that the messaging strategies in this equilibrium satisfy µ̃1(ω1) = ω1 for all

ω1 and µ̃2(ω2) = ω2 for all ω2 ∈ [0, τ). Then it must be the case that for all m2 < τ ,

s̃1 = (ω1 − αm2)/(1− αβ) and s̃2 = (ω2 − βm1)(1− αβ).

If m2 > τ , then it is more difficult to give the equilibrium strategies. As player 2

sends at least two different messages from the interval [τ, 1], the belief of player 1,

λ1(ω2|m2), will depend on the message m2 ∈ [τ, 1]. On the other hand, as player 1

is fully revealing her type, player 2 will know player 1’s equilibrium action y1 with

certainty. Thus, player 2 will play her first-best action y2 = ω2 − βy1. From this,

player 1 will know that player 2’s expected action is Eλ1y2 = Eλ1ω2 − βy1. Thus,

player 1’s equilibrium action must be

s̃1(ω1,m1,m2) = min

(
w1 − αEλ1ω2

1− αβ
, y1

)
.
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Some simple algebra shows that the first term in this expression is the minimum when

1

α
(ω1 − (1− αβ)y1) ≥ Eλ1ω2. (15)

When this condition holds, the (ex ante) expected utility of player 1 can be calculated

to be E[−(αω2 − αEλ1ω2)
2] = −α2 Var[λ1(m2)]. If this condition does not hold (and

so player 1 plays y1), then the expected utility of player 1 is E[−(αω2 − (ω1 − (1 −
αβ)y1))

2]. In particular, when ω1 = 1, condition (15) simplifies to (τ + 1)/2 ≥ Eλ1ω2

and the expected utility of player 1 when her equilibrium action is y1 simplifies to

E[−α2(ω2 − (τ + 1)/2)2].

In order to show that this is not an equilibrium, we will show that a type ω1 = 1

of player 1 strictly prefers to send the lower message m1 = α + (1 − αβ)y1. In this

case, it is easy to check that player 2, after observing this message, will know that

condition (15) is satisfied. Therefore, player 2 will play action y2 = ω2−βy1−αβ(1−
Eλ1ω2)/(1 − αβ). Knowing this, the optimal action of type ω1 = 1 of player 1 after

sending m1 = α + (1− αβ)y1 is

min

(
1 + αβy1 − α

αEλ1ω2 − αβ

1− αβ
, y1

)
.

If m2 is such that the first term in this expression is smaller, then the expected utility

of player 1 is −α2 Var[λ1(m2)]. If the second term in the expression is smaller, then

the expected utility of player 1 is E[−α2(ω2− (τ +1)/2−αβ(1−Eλ1ω2)/(1−αβ))2].

This is strictly better than the expected utility after sending m1 = 1. So, for some

m2, player 1 receives the same expected utility and, for some m2, she does strictly

better. We thus conclude that player 1 can gain by deviating from fully revealing her

type, so there is no more informative equilibrium than that given in the Proposition.

Having seen that putting an upper bound on one player’s action space both limits

the possibility of information transmission and disadvantages the restricted player

when the constraint is binding, it is intuitive that putting limits on both players

further inhibits the informational usefulness of pre-play communication. Indeed, if the

upper bound of the action spaces of both players is low enough, then no coordination
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via information transmission is possible and there are only babbling equilibria. This

is expressed in Corollary 1.

Corollary 1 Suppose that y1 and y2 are strategically complementary and that αβ <

1, y1 ≤ 2−α
2−2αβ

, and y2 ≤ 2−β
2−2αβ

. Then only babbling equilibria exist.

Thus, with a small combined effect on optimal actions, a sufficiently restricted

positive action space with complementarities leads to the conclusion that pre-play

communication will not only not help achieve a more efficient outcome but will aid the

bargaining position of the player with less strict constraints. Thus, the more restricted

actor—be it a nation-state, politician, firm, etc.—will be considerably disadvantaged.

3.2.2 Large Combined Effect

We now assume that αβ ≥ 1, with both players’ action spaces again bounded be-

low by zero and player 1’s action space bounded above by y1. As we have already

established that there is no informative equilibrium when αβ ≥ 1 and action spaces

are nonnegative, it must be that there is no information revelation when an upper

bound is added. The major impact of bounding the action spaces is the existence of

a unique babbling equilibrium.

Specifically, when player 1’s upper bound is y1, there is a unique equilibrium in

which no information is transmitted and player 1 always chooses this upper bound

for her equilibrium action. Player 2, in turn, optimizes against this expected action,

allowing each type of player 2 to attain a first-best outcome with utility zero. Thus,

bounding the action space of player 1 advantages player 2.

Proposition 6 Suppose that Y1 = [0, y1] and Y2 = [0,∞). Suppose also that y1

and y2 are strategic complements, i.e., α < 0 and β < 0, and that αβ ≥ 1. Then

there exists a unique equilibrium. This equilibrium is a babbling equilibrium in which

s1(ω1,m1,m2) = y1 for all ω1 and s2(ω2,m1,m2) = ω2 − βy1.

Proof. We know from Proposition 2 that only babbling equilibria are possible is this

case. It is straightforward to verify that the strategies given above form a babbling

equilibrium. The only thing that remains to be shown is that there are no other
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babbling equilibria. The first order condition for player 2 gives y2 = ω2 − βEy1. On

the other hand, the Kuhn-Tucker condition for player 1 requires that

y1 = min (ω1 − αEy2, y1) = min (ω1 − (α/2) + αβEy1, y1) .

But α < 0 and αβ ≥ 1 imply that ω1− (α/2)+αβEy1 > Ey1 for all ω1. As y1 > Ey1

cannot hold for all ω1, the only possible equilibrium strategy for player 1 is y1 = y1

for all ω1. But this is exactly the equilibrium strategy identified in the Proposition.

Therefore, this equilibrium is unique.

When both players have upper bounds, the same logic applies.

4 Conclusion

All in all, our theoretical results indicate that we must reexamine claims that pre-

play communication will lead to better outcomes. While full information revelation

is possible when both sides have private information and the action spaces of players

are unbounded, this becomes much less likely when action spaces are bounded. In

many instances, either only babbling equilibria exist or no equilibria exist at all.

Empirically, the relevance of our findings depends upon whether multiple play-

ers have private information and whether action spaces are sufficiently bounded to

impact information revelation and limit the actions of the players. Although these

parameters are difficult to measure, casual observation of an array of empirical situ-

ations of interest would suggest that both of these conditions are met. As such, our

results would be largely a tale of caution to those who believe that deliberation can

completely solve many vexing problems that currently exist.

In the future, we would like to extend our model to incorporate more players.

This would, for example, be a way to incorporate a biased or unbiased mediator, to

address issues of coalition formation in the pre-play stage, or to examine how cheap

talk in moderately sized deliberative bodies such as committees might be relevant.

Such extensions would, in turn, aid our understanding of how these phenomenon play

out in the real world.
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Baliga, Sandeep, and Tomas Sjöström 2004. “Arms Races and Negotiations,”

Review of Economic Studies 71: 351–369.

Banks, Jeffrey S., and Randall L. Calvert 1992. “A Battle-of-Sexes Game

with Incomplete Information,” Games and Economic Behavior 4: 347–372.

Battaglini, Marco. 2002. “Multiple Referrals and Multidimensional Cheap Talk,”

Econometrica 70: 1379–1401.

Crawford, Vincent P., and Joel Sobel. 1982. “Strategic Information Trans-

mission,” Econometrica 50: 1431–1451.

Doraszelski, Ulrich, Dino Gerardi, and Francesco Squintani. 2003.

“Communication and Voting with Double-Sided Information,” Contributions to

Theoretical Economics 3: 1084–1124.

Farrel, Joseph. 1988. “Communication, Coordination, and Nash Equilibrium,”

Economic Letters 27: 209–214.

25



Farrel, Joseph. 1993. “Meaning and Credibility in Cheap Talk Games,” Games

and Economic Behavior 5: 514–531.

Farrel, Joseph, and Robert Gibbons. 1989. “Cheap talk Can Matter in Bar-

gaining,” Journal of Economic Theory 48: 221–237.

Farrel, Joseph, and Matthew Rabin. 1996. “Cheap Talk,” Journal of Economic

Perspectives 10:3 103–118.

Yong-Gwan, Kim, and Joel Sobel. 1992. “An Evolutionary Approach to Pre-

play Communication,” Econometrica 63: 1181–1193.

Krishna, Vijay, and John Morgan. 2001. “A Model of Expertise,” Quarterly

Journal of Economics 116: 747–775.

Krishna, Vijay, and John Morgan. 2001. “Asymmetric Information and Legisla-

tive Rules: Some Amendments,” American Political Science Review 95: 435–452.

Morris, Stephen, and Hyun Song Shin. 2003. “Global Games: Theory and

Applications,” in Advances in Economics and Econometrics (Proceedings of the

Eighth World Congress of the Econometric Society), edited by M. Dewatripont, L.

Hansen and S. Turnovsky. Cambridge: Cambridge University Press.

Palfrey, Thomas R., and Howard Rosenthal 1991. “Testing for Effects of

Cheap Talk in a Public Goods Game with Private Information,” Games and Eco-

nomic Behavior 3: 183–220.

Rabin, Matthew. 1990. “Communication between Rational Agents,” Journal of

Economic Theory 51: 144–170.

Rabin, Matthew. 1994. “A Model of Pre-game Communication,” Journal of Eco-

nomic Theory 63: 370–391.

26


