Materials Science Minor (Draft 3/26/12)

This minor is intended for students who have chosen to take a minimum of 16 credits of materials science coursework in any appropriate department.

Required:

1) ME 280 or MSC 202 Introduction to Materials Science
 Prerequisites below or with permission of instructor:
 MTH 163 Differential Equations I
 MTH 164 Multidimensional calculus (same as ME 164)
 PHY 123 Waves & Modern Physics
 ME 226 Intro to Solid Mechanics
 PHY 122 Electricity & Magnetism

2) Choose three of the following courses
 * **may only include one** of the following courses:
 PHY227 (MSC230), CHM455 (MSC455), ME460 (MSC 405)
 * **must include at least one** course at the 400(graduate) level

 CHE 225 Chemical Engineering Thermodynamics
 CHE 280 Materials Engineering
 CHE 286 Polymer Science & Technology
 EE 220 Electronic Properties of Materials
 EES 204 Mineralogy
 EES 240 Optical Mineralogy and Petrology
 EES 208 Structural Geology
 ME 242 Solids and Materials Laboratory
 ME 281 Mechanical Properties of Materials
 PHY 251 Introduction to Solid State Physics
 PHY 227 (MSC 230) Thermodynamics & Statistical Mechanics
 BME 445 (MSC 445) Biomaterials
 BME 483 (MSC 483) Biosolid Mechanics
 CHE 462 (MSC 462) Cell & Tissue engineering
 CHE 413 (MSC 413) Engineering of Soft Matter
 CHE 454 (MSC 454) Interfacial Engineering
 CHE 480 (MSC 431) Chemistry of Advanced Materials
 CHE 486 (MSC 433) Polymer Science & Engineering
 CHE 487 (MSC 434) Polymer Rheology & Processing
 CHE 492 (MSC 472) Biointerfaces
 CHE 416 (MSC 416) X-ray Crystallography
 CHM 455 (MSC 455) Thermodynamics and Stat mechanics
 CHM 456 (MSC 456) Chemical Bonds: From Molecules to Materials
 CHM 458 (MSC 436) Molecular Spectroscopy and Structures
 ME 408 (MSC 401) Phase Transformations
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 449 (MSC 409)</td>
<td>Elasticity</td>
</tr>
<tr>
<td>ME 451 (MSC 403)</td>
<td>Characterization methods in Materials Science- Diffraction</td>
</tr>
<tr>
<td>ME 460 (MSC 405)</td>
<td>Thermodynamics of nano and microsolids</td>
</tr>
<tr>
<td>ME 461 (MSC 461)</td>
<td>Fracture and Fatigue</td>
</tr>
<tr>
<td>ME 462 (MSC 407)</td>
<td>Solids & Materials lab</td>
</tr>
<tr>
<td>ME 463 (MSC 408)</td>
<td>Microstructure</td>
</tr>
<tr>
<td>ME 466 (MSC 466)</td>
<td>Electrochemistry & Corrosion</td>
</tr>
<tr>
<td>ME 541 (MSC 541)</td>
<td>Nanoscale crystalline defects</td>
</tr>
<tr>
<td>OPT 421 (MSC 470)</td>
<td>Optical properties of Materials</td>
</tr>
<tr>
<td>OPT 469 (MSC 474)</td>
<td>Nano-optics</td>
</tr>
<tr>
<td>PHY 418 (MSC 418)</td>
<td>Statistical mechanics</td>
</tr>
<tr>
<td>PHY 420 (MSC 420)</td>
<td>Intro to Condensed Matter Physics</td>
</tr>
</tbody>
</table>