
the star lab introduction to R Day 4

Conditional Statments

We often want to check a conditional statement and then do something in re-
sponse to that conditional holding, or not holding. Try (writing in RWinEdt):

d<-runif(1)
if(d>0.5){cat("\n\n mad benjamins \n\n")}

Here is what is happening:

1. d is a random uniform number drawn from (0,1)

2. we tell R : if d is greater than 0.5, then do the operation in the curly
braces.

3. the operation in the curly braces is a cat statement (short for ‘concatenate
and print’) which will print the contents of the quotation marks.

4. the \n are simply line breaks to impose a bit of space between the prompt
and our output. Here that means two breaks either side of the text.

Perhaps we need R to do something if the condition isn’t met. No problem (note
the curly braces!):

if(runif(1)>0.5){cat("\n\n rock\n\n")}else{cat("\n roll \n")}

A simpler, ‘hard wired’ alternative to this is ifelse() which has three argu-
ments: the first is the ‘test’ (what condition do you want to check?), the ‘yes’
(what should R do if this condition is met?), and the ‘no’ (what should R do if
this isn’t met?):

x<-4;y<-6
ifelse(runif(1)>0.5, x, y)

Suppose we want to check more than one condition. Then & will come in handy:

if(runif(1)>0.5 &rnorm(1)<0){print(x);print(y)}else{(plot(density(rnorm(100))))}

Notice the use of ; to have R do a couple of things. Sometimes you’ll see the
use of &&. This means that the second conditional is only checked if the first
one is true. This would make no difference to the example above.

Usefully, we can nest if() loops. Try the following in R -WinEdt and then
source() it (don’t paste it):

rm(list=ls())

if((r<-runif(1))>0.5){cat("r is",r,"\n")
if(r<.6){print("0.5 to 0.6")}else

if(.6<r&r<.7){print("0.6 to 0.7")} else{print("bigger than 0.7")}} else
{(print("smaller than 0.5"))}

1

the star lab introduction to R Day 4

Lots of things to notice here:

1. rm(list=ls()) simply clears whatever objects are in the memory (should
be at the top of all your programs)

2. (r<-runif(1))>0.5 checks the conditional and assigns the number to r
in one go.

3. {cat("r is",r,"\n")} reports back the value actual value of r that has
been assigned (notice the use of the commas) outside the quotation marks.

4. if(r<.6)print("0.5 to 0.6") this occurs conditional on r being greater
than .5, but less than .6

5. else if(.6<r&r<.7){print("0.6 to 0.7")} is checked if r is greater
than 0.5, and it is not less than 0.6.

6. else{print("bigger than 0.7")} prints something if the previous state-
ments are false (but r>0.5)

7. else{(print("smaller than 0.5"))} is the last line of the program and
matches the first conditional (i.e. we are now in the case where r is less
than 0.5)

Writing Functions

The nice thing about R is that we can easily write new functions. Here’s a simple
example that plots graphics (but is not particularly useful):

sincosplot<-function(a=0,b=1){
if(a>b){stop(" need a<b")}

plot(sin(seq(a,b,0.01)), cos(seq(a,b,0.01)))
a<<-a; b<<-b
}

1. the function is called sincosplot(). It has features exactly like those of
other, ‘built in’, R functions.

2. to call it, just type sincosplot(). Notice that it has default values for a
and b which simply form the start and ends of the plot axes. If you don’t
specify any arguments to this function, it will use zero and one.

3. try messing around with the function calls: e.g. try sincosplot(-1,2)
or try sincosplot(1,3).

4. clearly, the function won’t work if a is greater than b. We build in a
warning message using stop("need a<b") which stops the operation, and
issues a warning.

2

the star lab introduction to R Day 4

5. we might want to check what a and b were for later use. But there is a
problem: outside of the function, a and b do not exist. As a result, we use
a ‘global assignment’ in the function, denoted by <<-. This means we can
take a look at the object a or b after the function has completed running.

We can call functions from other functions. Try:

genplot<-function(){

p<-runif(1)
n<-p/2
sincosplotter(n,p)

}

Notice we are giving some parameters, p and n that are then passed to sincosplotter().
Repeat the call a few times to see how it works.

Sampling

Quite often we have to sample from a (posterior) distribution we created. In
general, we want to sample n values, but we want the sample we produce to be
‘weighted’—in the sense that it is proportional to the mass—for each value of
our discrete support (say, the thousand values of θ we created for our homework.

We could put together the numerical cdf, but it easier to use sample directly.

cand.theta<-seq(0,1,0.001)
p<-dchisq(cand.theta, df=15)
s<-sample(cand.theta,1000, replace=T, prob=p)

Here, I’m assuming that we first took 1000 values between zero and one, and
then we worked out that the posterior,Pr(θ|y), was χ2

15 (which is unlikely, but
anyway). Then we sampled:

1. the object of our sampling was our candidate θ values.

2. we wanted a sample of size 1000

3. we replaced the candidates each time we sampled

4. we set prob=p which means we are sampling in proportion to the posterior
we calculated.

Loops

Loops, like crystal methamphetamine, are easy to use, and easy to abuse. They
are the workhorses of much of the R that gets written, partly because they are
so straightforward to write. This is unfortunate is some ways, because they are
often inefficient. Throwing caution to the wind, try the following in R -WinEdt:

3

the star lab introduction to R Day 4

for(i in 1:1000){
hist(rnorm(100),col=i, main=paste("Picture",i,sep=" "))
}

1. this is a for loop: the give away is in the first line. We are saying, ‘for’ i
between 1 and 1000, do the thing in the curly braces.

2. here that is: draw a histogram of 100 random normal points, color it with
color number i and then call it Picture i where i, of course, is just a
number.

3. actually there are not 1000 colors in R ’s palette, so it recycles some.

4. the paste command takes the following syntax:

paste(object 1, object 2, what separates object 1 and 2)

Of course, from a programming perspective, having this loop run every time
you run the program maybe annoying. One option is simply to wrap it into a
function. So:

homework<-function(){ for(i in 1:1000){
hist(rnorm(100),col=i, main=paste("Picture",i,sep=" "))
}

}

Which means that the for loop won’t run until we call it via homework()

Most of the time, we want to loop through a matrix (or data set) take something
from that matrix and put it somewhere else.

First off, create a matrix—initially filled with missing values—to take the fruit
of our labors:

output.mat<-matrix(NA, nrow=30,ncol=1)

Now, suppose we have a matrix like this

data.mat<-matrix(runif(900), nrow=30)

(i.e. a 30 × 30 with 900 random numbers). And we want to go row by row
taking the mean of the row and outputting it. This would work:

for(arthur in 1:nrow(data.mat)){ #loop starts here
output.mat[arthur]<-mean(data.mat[arthur,])

}

Notice:

1. we use # to make comments to ourselves (which R won’t read)

4

the star lab introduction to R Day 4

2. we can use pretty much anything for our index: here it is arthur

3. the end of the index is the number of rows in data.mat (which is 30)

4. now, we are assigning the mean of the arthurth row of data.mat to the
arthurth row of output.mat

So what’s the problem? The loop is perfectly accurate, but it is slow, and
laborious to code. Much more quickly we could have used:

output.mat.2<-apply(output.mat, 1, mean)

The apply() command works as follows:

1. the first argument is simply the object to be operated on (here it is the
data.mat)

2. the third argument tells R the function to be operated (here we want the
mean)

3. the second argument tells R how to operate on the object. Here we want
to take the mean of each row, so we use 1. If we want the operation done
by column we use 2.

apply() is an example of a ‘vectorized’ operation we are taking the data.mat
all at once and performing our operation. Sometimes we need the list version
(lapply), but be careful depending on what type of object you want out at the
end.

We may sometimes have cause to place for loops within other for loops (but
generally try to avoid). Here is an example:

letters.mat<-matrix(NA, nrow=10, ncol=5)
for(m in 1:10){

for(n in 1:5){letters.mat[m,n]<-(letters[n])}
}

Which writes the letters (which are built into R) a through e ten times over into
a matrix called letters.mat. So, row 1, column 1 of letters.mat will be an a,
row 2, column 1 of letters.mat will be an a, row 1, column 2 of letters.mat
will be a b and so on. Notice that the way we are indexing the loops matters
here. If we put letters.mat[n,m] instead of letters.mat[m,n]in our code,
we’ll get the dreaded

Error: subscript out of bounds

There are alternatives to for which are used in different circumstances. Exam-
ples are while and repeat which are often used together.

5

the star lab introduction to R Day 4

Other Types of Loops

The syntax for while is while(condition) expression which means while a
particular condition holds, the expression will be executed. repeat(expression)
simply repeats the expression operation again and again and again. This type
of thing turns up a lot in monte-carlos. Consider the following:

n<-1
f.mat<-matrix(NA, nrow=10, ncol=n)

while(n<36){

repeat{

f<-rbinom(10,1,0.5)

if(sum(f)%%2==0){break()}

}

f.mat<-matrix(cbind(f.mat[,1:n-1],f), nrow=10, ncol=n)

n<-n+1
}

Here, while n is less than 36, I need to repeatedly sample from a binomial (with
a sample size of 10) until an even number of the sample are ones. So, for ex-
ample, [1, 0, 0, 0, 0, 0, 0, 1, 1, 0] won’t do, but [1, 1, 0, 0, 1, 1, 0, 1, 1, 0] is fine. As
soon as I get a sample fulfilling my requirements, it should be stored (in f.mat).
Notice that I have to increment the loop with n+1 or else the condition n<36
will be true forever, and the program will never stop.

Just to make this point, consider

repeat(cat("\n Arthur, when are we getting married?\n\n"))

which won’t end until you hit esc or STOP.

6

