
the star lab introduction to R Day 3

Built-in Tests/Exploring Data

Like most statistical packages R can do lots of tests on data with a minimum of
fuss. Just as an example, load the coalition data and then try the Shapiro-Wilk
normality test:

shapiro.test(coal.data$durat)

Clearly, W is significant so we reject the hypothesis that the durations are
normal. Standard tests like Kolmogorov-Smirnov ks.test(), t-tests t.test()
and Kruskall-Wallis kruskal.test() are available too. Take a look at

apropos("test")

for starters.

Notice that you may want to plot the (empirical) CDF of some data. Again,
this is pretty intuitive:

dur.ecdf<-ecdf(coal.data$durat)
plot(dur.ecdf, col.h="blue")

Notice that we first assign the ecdf, then plot it. When we plot it, we use col.h
as the coloring argument. This is unusual, but comes from the fact that ecdf
has lots of individual pieces that can be colored different ways.

We can compare the empirical cdf with the cdf we are actually modeling it
as. In this case, King et al. treat the durations as exponentially distributed.
Is this is a good fit? One crude way to eyeball it is to create some random
exponential numbers with the same arrival rate and compare the ecdf.

ran.nos<-rexp(n=nrow(coal.data), rate=1/mean(coal.data$durat))

Notice:

• rexp() tells R we want random numbers drawn from an exponential dis-
tribution

• n=nrow(coal.data) tells R we want as many of them as there are obser-
vations in the data set (which is 314)

• rate=1/mean(coal.data$durat) tells R that the characteristic parameter
of those random numbers—i.e. the rate (sometimes called λ)—should be
one over the mean of the actual durations in the data. Always make sure
you check the way that R is parameterizing its distributions: it may be the
same or the reciprocal of your textbook definitions. See esp the details
in the help of ?rbeta and ?rgamma

The fit looks ok to me.

Finally, it never hurts to do a few box plots. Here I’m looking at the tem-
perature of some beavers, according to their activity level. First, you’ll need to
load the data

1

the star lab introduction to R Day 3

data(beavers)
boxplot(temp~ativ, data=beaver1)

Notice:

• the data set we want is beaver1, but that is kept within the beavers data
set

• the tilde ~ tells R we want ‘the thing on the left explained by the thing on
the right’. Here, that means temp explained by activ. We will need this
structure again.

Plotting plus: Identification, Legends and Greek Letters

Suppose we created the following plot (from some UN data) of GDP versus
infant mortality:

data(UN)
plot(UNgdp, UNinfant.mortality)

We would like to label (some of) the points. In this case, the data set is arranged
such that the row.names are the actual countries (take a look at the data to see
this). We can this fact along with the identify() function:

identify(UNgdp, UNinfant.mortality, labels=row.names(UN))

Now click on the points that you care about. Notice

• the first argument of identify() is the x-axis which we need to ‘look up’
for the definition of the points

• the second argument of identify() is the y-axis which we need to ‘look
up’ for the definition of the points

• labels= tells R what it should call the points. Here, that is the row.names()
of the data set.

A different problem occurs when we want to label curves or points in general.
Consider the following data set in which cats are categorized as male or female
and then their body and heart weights are recorded. Suppose we want to plot
points, with each sex color-coded. First, we will load and subset the data:

data(cats)
toms<-subset(cats, cats$Sex=="M")
queens<-subset(cats, cats$Sex=="F")

Then we’ll plot their data in different colors

plot(toms$Hwt, toms$Bwt, pch=19, col="blue")
lines(queens$Hwt, queens$Bwt, pch=21, col="red",type="p")

2

the star lab introduction to R Day 3

Note the use of lines() instead of plot() in the second call. Also, the use of
type="p" to tell R we need points, not lines. The pch= argument is telling R to
change the plotting character it used.

To add a legend, we need the legend() command:

legend(locator(), legend=c("Toms","Queens"), col=c("blue", "red"), pch=c(19,21))

Lots going on here:

• the first argument tells R we want to position the legend with the mouse:
you will need to actually click somewhere on the plot for the legend to
appear. There are other options here: we could specify an x, y point
location or use a position argument (see ?legend).

• the legend= itself is a character vector to be stacked—it is the names of
our groups

• col= are the colors we used in order of the legend (i.e. Toms, then Queens)

• pch= are the plotting characters we used in order of the legend (i.e. Toms,
then Queens)

Re-ordering a Data Set

Sometimes we need to reorder our data according to a particular variable’s value.
We need order() to do this, and we need it in a slightly convoluted way. The
order() function rearranges a vector into ascending or descending order, but it
returns a vector describing the order. To see this, consider

J<-c(1,pi,8,2,6,100,89) order(J)

The output tells you that the vector ascends in order 1st element, 4th element,
2nd element, 5th, 3rd, 7th, 6th—which, when you look at the vector, makes
sense.

Suppose we wanted to re-order the coalition data by the durat variable. The
magic happens with

o.coal<-coal.data[order(coal.data$durat),]

which is telling R to rearrange the rows (i.e. observations) of coal.data ac-
cording to their values of durat (note the comma after the order call).

Missingness and Logical Vectors

With R , as in life, things are TRUE, FALSE or not known. Consider the following:

y<-c(1:5, NA)

3

the star lab introduction to R Day 3

Here NA is simply a piece of missing data. In general, that will problematic for
us, and we might need to tell R to ignore it. Try mean(y) for example and then
try mean(y,na.rm=T) which tells R to take the mean of the vector y, but drop
any NA values it finds in so doing.

We can ask R about the characteristics of the vector from this logical perspective.
We can ask, for example, which elements of y are greater than 2:

y>2

We can convert this vector to a numerical (0,1,NA) vector using a straightfor-
ward trick:

z <- y>2
as.numeric(z)

This may not seem particularly important now, but it can be very helpful. Note:
the logical operators are == (=), >= (≥), <= (≤) and != (6=).

An extra thing to notice here, that may be useful elsewhere, is the function
is.na() used like this:

is.na(y)

which asks which values of y are missing. Of course, we can use as.numeric(is.na(y))
here too.

A really helpful function that uses logical operators is subset() that enables
us to pick up members of a vector (or matrix) that possess a certain property.
Consider:

h<-matrix(1:100)
subset(h, h>64)

This will produce a subset of the members of h such that h>64 is satisfied. Going
back to our previous data work, consider

load("z:/pathway/coaldata.rdata")
short.lived<-subset(coal.data, coal.data$durat<9)

which will create a new data frame called short.lived which contains only those
cabinets which collapsed before 9 months where up. To check we have it right,
try

summary(short.lived$durat)

A nice extra command you might see is a%%b which checks whether a can be
divided by b until there is no remainder. For example:

subset(h,h%%7==0)

4

