
the star lab introduction to R Day 2

R-WinEdt

Open R and RWinEdt should follow: we’ll need that today.

Cleaning the memory

At any one time, R is storing objects in its memory. The fact that everything is
an object in R is generally a good thing, but you need to be careful. Try

ls()

to get a list of everything that’s there now. You may be surprised to see lots
of stuff; in fact, it has been produced by those packages loading. Get rid of it
before we begin:

rm(list=ls())

As good practice, put this command at the top of every program you write.

While we’re at it, notice that R is working in a particular directory right now.
To get the working directory, use

getwd()

This probably doesn’t matter much today, but it can be important when you
want to work from a specific place on your z: drive. To set the working direc-
tory, use setwd().

Commenting and Other Conveniences

We can comment code using #:

#this is a comment
f<-c(4,5,2)
#this is a comment also

will create the object f. . . and nothing else. Use # wisely and liberally in your
own programs.

If not already obvious, use the uparrow to get the previous command back.

Use a semi-colon between commands to get several on one line:

a<-2; d<-4; j<-100

1

the star lab introduction to R Day 2

Reading Data

We often want to read in data, but it’s format varies. The most common situ-
ations are reading in .txt files, .csv files and .dta (i.e. STATA) files.

To see how we would use the commands, go to http://mail.rochester.edu/ spln/R/data/
and download the data to your z: drive.

We will read the data into R (using slightly different calls each time) and then
look at it.

Text files/Tables/ASCII

Start with

football<-read.table("z:/path/path/football.txt", header=T)

where, obviously, path refers to wherever you put it. Notice:

• read.table() is generally what we use for .txt files

• get help using ?read.table

• the pathway is not case sensitive

• use forward slashes in the pathway

• header=T tells R the first line is a ‘header’ with column names—try reading
the data in again without this argument

• the new object is called football: we could have called it anything we
liked

An important point about .txt data is that we need to have the same number
of entries in every row. This can be a problem when, say, names of things have
spaces. Say you had a file with a set up like this:

City Population
Houston 2144491
Dallas 1232940
San Antonio 1296682
Austin 709893

Although you don’t need to have all the entries aligned with the columns, you
do need to make sure you have one and only one entry per column. Here, R
would complain about the third line: it has three entries, but only two columns
(or R might complain that the other columns don’t have enough entries).

We can type football to see it, but it is generally better to use

edit(football)

2

the star lab introduction to R Day 2

which gives an ‘active’ window. Even better, try

library(relimp)
showData(football)

CSV files/comma separated/excel

These files are comma separated, and you should be able to open them directly
in excel (try it).

Bring the .csv file into R using something like

UK.data<-read.csv("z:/path/path/UKtime.csv")

Again, try looking at is via edit().

STATA file/.dta

STATA files are generally in a .dta format. R needs to load a package before
we read these in though:

library(foreign)

Actually, this package will allow us to read.spss() as well. We can read in the
.dta file using

coal.data<-read.dta("z:/path/path/coal.dta")

Data Properties

For various reasons, you will often want to know your data’s dimensions. Try:

dim(coal.data)
nrow(coal.data)
ncol(coal.data)

You might also want the variable/column names:

colnames(coal.data)

should take care of that. Though we typically conceive of this data as a matrix,
in fact it is actually being stored here as a data frame. In practice, this means
that R is doing various additional operations like converting various columns to
factors. We’ll come back to this.

Notice that, if we have the column names, we can pull any vector of data we
are interested in using the $ sign:

coal.data$fract

3

the star lab introduction to R Day 2

Literally, we are asking for the part of coal.data with the name fract. We
could also, of course, use the numerical referencing system we learnt before. So,
try:

coal.data[,27]

which will pull the 27th column.

Summaries are easy to come by, and often useful:

summary(coal.data$fract)
hist(coal.data$fract)
plot(density(coal.data$fract))

Attaching and the Search Path

It’s annoying to keep using $ every time we want a variable.

An alternative is to use attach() which sticks the data frame in R ’s search
path. To see R ’s current search path use

search()

This can be helpful when you have variables in different data sets with the same
names. So

attach(coal.data)

will attach the coalition data. Now

polar

will spit back the polar variable. Use detach(coal.data) to get rid of the
data from the search path. If you just use detach(), without an argument, the
object in the second position of the search path (which, here, will be your data)
will be dropped.

Editing/Writing data out

R was not designed for large scale data management and editing. Facilities exist
to do it, of course, but they can be a little clunky. Nonetheless, try:

football2<-edit(football)

and change something in the data. Now,

edit(football2)

should be an edited version of that data set. What many people do instead of
this is write the data out to another program (esp excel) and edit it there. So,
try

write.csv(football, file="z:/pathway/football2.csv")

where pathway is where you are keeping your data. Now open excel and find
football2.csv. You should be able to edit it freely.

4

the star lab introduction to R Day 2

Properties of Things

Above, we learnt a little about R thinks about data: its dimensions, number of
rows and so on. But we can be broader about this idea: we might want to ask
R about any object.

One way to do this is to ask what the mode of an object is. First, create
some objects:

a<-c(8,7,34, pi)
b<- c("gold", "sword", "juno")

Then try:

mode(a)
mode(b)

A better—more descriptive—way is to use str(). Try:

str(a)
str(b)
str(football)

We can also ask R directly using a ‘logical’: try

is.matrix(football)
is.vector(football)
is.data.frame(football)

For data work, it’s important to bear in mind the difference between variables
that are numeric, those that are characters, and those that are factors. To see
the difference, load up some of the built-in data, and then take a look at one of
the variables

data(iris)
iris$Species
str(iris$Species)

This variable is a ‘factor.’ This is different to a numeric or a character vec-
tor. Factors specify a discrete grouping of their components. Here, it is the
Species of iris flowers: these are not numeric, but they are data and can be used
in a regression or other procedure (i.e. they are not simply characters). The
simplest way factor is a dummy: say sex which has ‘male’ or ‘female’ as its levels.

To make a factor, use factor(). Try

str(coal.data$prox)
var<-factor(coal.data$prox)
str(var)

5

the star lab introduction to R Day 2

If you want to convert a factor to a numeric vector (which comes in handy
sometimes) you need an extra step—use as.numeric(as.character()).

var2<-as.numeric(as.character(var))
str(var2)

and we’re back to where we started. . .

Tables

Tables are pretty straightforward. Try

data(quakes)
qtable<-table(quakes$stations)
qtable

for fun (note the assignment: not strictly necessary, but handy in a moment).
In fact, this is a table of the number of stations reporting 1000 seismic events
near Fiji since 1964. So, there were 20 instances of one station reporting, 28
instances of 11 stations reporting, 1 instance of 132 stations reporting etc. What
is often helpful in these situations is

plot(table(quakes$stations))

To get a proportions table, there is a little work-around:

table(quakes$stations)/sum(table(quakes$stations))

A couple of last things:

• names(qtable) will give you the ‘names’ (in this case categories) that the
counts are binned into

• as.numeric(qtable) will give you the actual values in the table

Saving

The core functions you’ll need are

• save(x, file="z:/path/xyz.rdata") which saves the object x to the
file xyz.rdata. You can get it back (another time) using load("z:/path/xyz.rdata").
When you ask for ls() it will tell you that x (whatever that is) is available.
Try it with the coalition data.

• save.image(). When you quit R , you are asked if you want to save
the workspace image. This means saving all the objects that are cur-
rently sitting in R ’s memory. This time, use .Rdata as the extension.
So, save.image(file="z:/pathway/RstuffSession1.Rdata") will put
everything into a file called RstuffSession1.Rdata which you can later
load. . . and get all your objects from.

6

the star lab introduction to R Day 2

I personally think it is better, when possible, to write (commented) code that
will create the objects from scratch. . . and then save that. This way, you won’t
have to try and remember where and/or what everything is: you can just make
it again.

7

