
the star lab introduction to R Day 1

What is R ?

• a statistical language (in the same broad sense of c++ or python)

• a statistical environment (in the same broad sense of STATA and SPSS)

• great

• free

• used pretty much exclusively in the department for methods work

• regularly updated: what version are we using? (try typing version in a
minute)

Get it here: http://cran.r-project.org/. It will run on almost anything.

Read more about it here: http://www.r-project.org/.

Note: free Manuals and Search facilities. Try an R Site Search for ‘covariance
matrix.’ You should see mailing list questions others have asked—a fantastic
source of info.

It is maintained by volunteers, and volunteers write packages. There are a lot
of these.

R does most things very well. It is preferred to almost any other (statisti-
cal) environment especially for Bayesian and non-parametric stuff. Graphics
are unbeatable (especially at this price).

Open Up Basics

When you open R (which you will find via the Start menu), you should see
RWinEdt open too. People sometimes use R directly, or they write ‘programs’
in RWinEdt and then paste or source them. If the program contains more than
one or two operations, use RWinEdt.

You should also see a list like this:

Loading required package: RWinEdt
Loading required package: utils
Loading required package: MASS
Loading required package: grDevices
....

R is telling you it is automatically loading a set of packages that might be help-
ful. This is specific to the star lab, and is not how factory R is distributed.

Note: stuff that R has already done is in blue; when it wants something from

1

the star lab introduction to R Day 1

you, you should see a red command line prompt.

What can R do? Try:

demo(graphics)

Nice enough. Then try :

library(rgl)
demo(rgl)

Use the mouse to mess around with the plots. Notice that the R console is
different to the R Graphics window: be careful with maximizing etc.

R as a calculator

R can be used as a calculator. Try 2+3 <Enter>, 2*3<Enter> and 2^3<Enter>—
you get the general idea.

Be careful with brackets and braces: (2+3)/(6-2)6= (2+3)/6-2.

Guess what log, exp, det do. . .

Getting Help

If you know the name of the function on which you need help (more on this
below), use a question mark. Try:

?mean

and notice the window gives you (very helpful) examples that you can cut and
paste.

Suppose you weren’t sure of what you wanted, but knew it had something
to do with cov (say, covariance). Try:

apropos("cov")

which suggests a bunch of topics connected to that key-word. Use this list to
get, say,

help("discoveries")

and maybe do one of the examples (cut and paste).

Assignments & Vectors

The basic R operation is the assignment, and its operator is <- which is formed
by shift+, and shift+ (next to the zero key). We can pretty much assign
anything to anything. Try this:

2

the star lab introduction to R Day 1

a<-34

Now a has all the ‘properties’ of 34. For example, try a+5. Say I want b to have
the same properties. . .

b<-a

will take care of that. Now, try b+a: exactly as expected! Everything we’ve
said here applies to characters (rather than numbers) too:

d<-"monkey"

but notice that we have to use quote marks. You can’t assign a value to an
object that begins with a number, so

5f<-59

won’t work, but f5 will work fine.

Vectors are keys building blocks (of course, the assignments above are just
vectors of length 1). To make a vector, g we use the concatenate command,
written as c. So, try

g<-c(3,4,7,8)

Again, try adding 5 to g, and you’ll see it goes element by element. Character
vectors are also possible:

animals<-c("elephant", "giraffe","zebra", "goat")

But obviously R won’t appreciate you wanting to add 5. We can mix it up:

some.stuff<-c("elephant", "giraffe","zebra", "goat",78)

Notice that the individual members of the vectors can be pulled out with
straightforward use of square braces. If you want the first element of g, try
g[1]. This indexing differs from some other languages. If you want the sec-
ond and third elements of animals, try animals[c(2,3)] (note the use of the
concatenate!). A couple of extra helpful things here:

1. we can get the last element of the vector by using the fact that it occurs
in the same position as the length of the vector itself. So g[length(g)]
is really g[4]. . . which is 8.

2. we can use from:to syntax to make life easy: say you want the first
through third elements of animals. One way is animals[c(1,2,3)], but
a better way is animals[1:3] (no need for concatenate now). If animals
was, say, 10000 elements long, you would appreciate the time saved.

A final thing: notice that we can assign vectors ‘to themselves.’ Consider:

j<-c(1,2,3)
j<-c(j,4)
j<-j+1

This can be very helpful sometimes (but very confusing at other times!).

3

the star lab introduction to R Day 1

Functions

There are literally thousands of functions in R, and people are always writing
more (including you in 404/405/505/506). Let’s say you wanted to sort the
vector g above:

sort(g)

will do it. Several things to notice here:

1. the function sort works by placing round braces around the thing you
want it to operate on (no weird spaces, unlike STATA).

2. you can get help by typing ?sort

3. notice from the help that sort has a whole series of arguments. The
function has defaults which are given in the Usage box in the help. We
can specify that R sort in a different way by altering these arguments: try
sort(g, decreasing=T) where T stands for true.

4. we can either name the argument, or we can match its position in the call.
More on this later. . .

Try and sort the animals vector too: it will put everything in alphabetical order.
In your own time, take a look at ?order which can be very helpful sometimes.

Matrices

We can write matrices from scratch. Try

mat<-matrix(c(1,3,5,2,7,3,2,4,4),nrow=3,ncol=3)

We tell R we want the matrix to consist of the numbers in the vector, and that
it should be 3 rows by 3 columns. Notice that R will fill the matrix by column.
Often we want it filled by row. Let’s try again:

mat<-matrix(c(1,3,5,2,7,3,2,4,4),nrow=3,ncol=3,byrow=T)

where the T tells R to behave slightly differently. For more information, take a
look at ?matrix. The transpose of a matrix is obtained by t(), and the inverse
is solve(). We can get the eigenvalues/vectors using eigen().

Unsurprisingly, we can bind vectors together to make matrices. Define a couple
more vectors (in addition to g above):

h<-c(4,5,3,2); i<-c(9,0,4,1)

Notice the use of ; which simply tells R I want another command on the same
line (you could have used a return instead). We can bind our vectors by row
(rbind) or column cbind. Take a look at

cbind(g,h,i)

4

the star lab introduction to R Day 1

and

rbind(g,h,i)

Of course, we would generally assign the cbind() or rbind() of these vectors
to some new object, e.g.:

mat.2<-cbind(g,h,i)

Much as with vectors, we can pull out cells from our matrices. Now the syntax
is mat.2[row, column]. So

mat.2[3,c(1,3)]

will return row 3, columns 1 and 3 of mat.2. Notice that we can use the -c()
command to drop rows and columns. So:

mat.2[-1,]

will drop the first row of mat.2

Random Numbers

Suppose we want 100 random numbers drawn from a normal distribution, with
mean 2, standard deviation 5. In general, we can use rdistribution name. For
the normal, we can use rnorm, for the beta, we can use rbeta, for the poisson
it’s rpois and so on. The syntax you need can be found via the help functions
(e.g. ?rnorm), but in our case:

norm.nums<-rnorm(100, mean=2, sd=5)

will do the trick. We can get 102 beta random numbers with α = 3, β = 6.2
with

beta.nums<-rbeta(100, shape1=3, shape2=6.2)

Notice that rbeta doesn’t use intuitive naming for the arguments, and make
sure to read the help files to check how the parameters of the distribution are
defined.

An alternative way to generate random numbers is take a series of quantiles
between zero and one, and then push it through a density transformation. This
is a bit inefficient—in that it is implicitly discrete, and assumes you ‘know’
something about the support of your distribution—but works nonetheless. So,
try

ruler<-seq(-5,11,length=1000)
norm.nums.2<-dnorm(ruler,mean=2,sd=5)

Notice that norm.nums.2 is not a set of random normal values in the sense that
norm.nums is. Rather it is a density for every point in ruler.

5

the star lab introduction to R Day 1

Plotting, lines and Histograms

R is renowned for its fantastic graphics.

The key command is plot() which takes a possibly very large number of argu-
ments, but for our purposes:

plot(x, y, main=" ", xlab=" ", ylab=" ")

For right now, create L<-rnorm(100) and P<-rnorm(100). Now try

1. plot(L,P) which treats the object L as the thing on the x-axis and P as
the thing on the y-axis (notice also that we are using ‘positional’ matching
in the plot call.

2. it doesn’t have a title right now, so we need to redo our call to plot().
But notice: every time we call plot(), we redraw the graphic! So:

plot(L,P, main="My plot", ylab="The y axis", xlab="The x axis")

I switched the position of the ylab and xlab call, but that makes no odds
because the matching is being done by name (not position) here. Make
sure to use quote marks for title names!

Sometimes we want a line plot, not a point plot. Consider:

plot(1:length(P),P, main="My plot", ylab="The y axis", xlab="The x axis")

but then try:

plot(1:length(P),P, main="My plot", ylab="The y axis", xlab="The x axis",type="l")

and guess what type="l" does (hint: "l" is short for "line").

We sometimes want to more lines or points on a plot after we have drawn it.
This will generally be accomplished with lines(x=, y=,lty=) or points(x=,
y=). Try

lines(x=1:length(P), y=P-1,lty=3)

which will draw a line of type 3 (lty=3, which is a broken line) linking the
x-axis as is to P − 1 on the y-axis. Notice that the original plot call set the
size and nature of the axes (so some of the new lines appear off the original plot).

A very useful function is plot(density()) which allows us to plot a (kernel
smoothed) density. Try:

plot(density(P))

Histograms take little extra imagination:

6

the star lab introduction to R Day 1

hist(P)

Sometimes you want to have a histogram and an imposed smoothed density, in
which case you need to tell hist() not to give back frequencies:

hist(P, freq=F)
lines(sort(P), dnorm(sort(P), mean=mean(P),sd=sd(P))

Notice that we have to sort P for the overlay to make sure the line runs left to
right.

7

