University of Rochester

Skip Navigation Bar
July 24


Previous article

Next article




Currents home


Phone BookContact the UniversitySearch/IndexNews and Facts
Currents--University of Rochester newspaper

Mathematics refines evolution theories

Evolutionary biologists are used to digging into the past--but rarely in a quest to unearth equations. One group of scientists, however, has dusted off a 200-year-old formula to reconcile discrepancies among DNA studies designed to determine how species are related to one another.

In the June 30 issue of Science, John Huelsenbeck, assistant professor of biology, and his colleagues show how 18th-century math can help biologists grapple with the flood of DNA sequences coming from genome sequencing projects. His colleagues are Bruce Rannala, assistant professor of medical genetics at the University of Alberta, and Rochester graduate student John Masly.

"This method is a revolutionary approach to addressing questions concerning the evolution of important traits," said Paul Lewis, professor of ecology and evolutionary biology at the University of Connecticut and an expert at inferring evolutionary trees from DNA sequences. "This means that determining an evolutionary tree will be less biased by one particular estimate. The investigators of this study continue to be pioneers in this field."

The mathematician to whom Huelsenbeck, Rannala, and Masly have turned is Thomas Bayes, a British Presbyterian minister who devised a formula to account for uncertainties in data--uncertainties such as when one method suggests chimps are more like humans than orangutans, while another says the exact opposite. Bayes's formula allows informed guesses to be combined with new data. As the scientist collects more data, the initial guess carries less weight, and so the most accurate answer--such as which evolutionary family tree correctly depicts how birds split from reptiles--gradually takes shape.

Currently, scientists are forced to treat evolutionary trees as ironclad truth, even though the results from different studies often disagree with one another. Bayesian mathematics accommodates uncertainty about the evolutionary history of life, allowing other questions--such as the evolution of the genes of an organism--to be more accurately studied.

"The Bayesian approach reduces the chance that every new discovery completely reverses the one before, because it considers all the possible evolutionary trees and weighs them according to the likelihood that each is correct," said Huelsenbeck. "It's more robust because it compares each new bit of information against the overall understanding we have about evolution."

For centuries the scientific community largely ignored Bayes and his equation, in part because the calculations needed would take years, but the last decade has seen a resurgence of Bayes's popularity as computers have taken over the task of calculating his formula. Bayes would probably have been stunned to learn that doctors testing new drugs, chemists deducing the structure of unknown molecules, environmentalists tracking dwindling species, and researchers teasing out the last of the human genome, have all become reliant on his statistics as they sort through data.

Ultimately, the team's use of Bayes's formula will allow biologists to be surer of their conclusions, creating a more consistent picture of evolution's history.

"Bayes gave us a way to climb a little higher, even if we aren't so sure of our footing," Huelsenbeck said.

Maintained by University Public Relations
Please send your comments and suggestions to:
Public Relations.

SEARCH:     Directory | Index | Contact | Calendar | News | Giving
                     ©Copyright 1999 — 2004 University of Rochester