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Abstract

Duverger’s Law states that plurality rule in single member districts tends

to produce a two-party system. Most formal explanations of this Law rely on

strategic voting. In this paper we present a model that yields Duverger’s Law

without this assumption. Specifically, we show that even with nonstrategic

or “sincere” voters, the strategic decisions of policy-motivated candidates lead

to two candidate competition. This occurs because, with sincere voting, a

candidate who withdraws from the race transfers her votes to nearby candidates

with similar policy positions. For a candidate in last place in a multicandidate

race, this means dropping out can increase the chance that the winning policy

will be one she prefers. We find that all equilibria of the model involve exactly

two candidates choosing to run and thus Duverger’s Law holds. In addition, we

find that, in equilibrium, competition occurs on only one of the two dimensions

of the issue space. This result provides a theoretical underpinning for the

empirical finding that political competition is essentially unidimensional.
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1 Introduction

Political scientists have long been interested in how, across countries, the choice of

electoral system affects the number and type of political parties that must compete

within it. The most famous result in this tradition is Duverger’s Law: plurality rule

in single member districts tends to produce a two-party system. One argument that

Duverger (1954) used to justify his eponymous Law is that voters will be unwilling

to waste their vote on a third party that has no chance to win and will instead try to

make their vote count by voting for a less preferred party that has a better chance of

winning.1

Known as “strategic voting” or “tactical voting,” this behavior can be thought of

as a rational response by voters to the relative likelihoods of success of various can-

didates. In this way, strategic voting can be explained by decision-theoretic models

(McKelvey and Ordeshook, 1972; Black, 1978; Gutowski and Georges, 1993) or by

equilibrium models (Cox, 1987; Palfrey, 1989; Myerson and Weber, 1993; Fey, 1997).

However, empirical researchers have questioned the extent of strategic voting in ac-

tual elections (Alvarez and Nagler, 2000; Blais, 2002; Chhibber and Kollman, 2004;

Andre Blais and Turcotte, 2005). For example, Alvarez and Nagler (2000) summarize

their results as “leav[ing] open the question of whether voters generally do or do not

behave as strategic models of politics predict.” This fact calls into question those

previous explanations of Duverger’s Law based on strategic voting.

In this paper, we argue that Duverger’s Law can be explained purely by the ac-

tions of strategic candidates, without relying on strategic voting. We show that even

with nonstrategic or “sincere” voters, policy-motivated candidates are motivated to

act in a way that produces two candidate competition. Our arguments are formal-

ized by constructing a spatial voting model with sincere voters and policy-motivated

candidates. The assumption of sincere voting sets this paper apart from most of

the existing formal models of Duverger’s Law, which have concentrated on strategic

voting as the operative explanation (Palfrey, 1989; Myerson and Weber, 1993; Fey,

1997). Also, the candidates in the model are policy-motivated, as in Calvert (1985)

and Duggan and Fey (2005), but are unable to credibly commit to enact policies other

1See Riker (1982), Duverger (1986), and Cox (1997) for thorough discussions of Duverger’s Law.
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than their ideal point, as in the citizen candidate models of Osborne and Slivinski

(1996) and Besley and Coate (1997). However, unlike these latter models, candidates

are purely policy-motivated—there is no cost of entry or benefit to holding office,

assumptions that are also present in Feddersen et al. (1990) and Osborne (1993). Fi-

nally, Feddersen (1992) presents a model that is perhaps most closely related to ours,

but its results are driven by the assumption of costly voting, which is not present in

this paper.

The simple model that we present here has several notable features. We consider

a discrete issue space which consists of the four corners of a square. There are

many potential candidates, all of whom are purely policy-motivated and unable to

make credible policy commitments. Because they are policy-motivated, the logic of

Duverger’s Law works on the candidates’ decision calculus. That is, because voters

vote sincerely, a candidate who chooses to run may very well take votes away from

some other candidate that she would most like to see win, while not affecting the

vote share of candidates that she would not like to win. Put another way, in a

multicandidate race, when a candidate drops out it helps candidates with similar

positions and does not help candidates with dissimilar positions. In many cases,

then, dropping out of the race actually makes a policy-motivated candidate who has

very little chance of winning better off, because it makes it more likely a preferred

policy will be enacted. In this way, the “wasted vote” logic of strategic voting operates

in a similar manner on the strategic choices of potential candidates about whether to

run or not.

The general idea that strategic choices of actors other than voters can contribute

to the operation of Duverger’s Law is, of course, present in the literature. Indeed,

as a further justification of Duverger’s Law, it is argued that the effect of strategic

voting is magnified by the strategic actions of party elites. As Cox (1997) puts it,

. . . elite anticipation of strategic voting should lead to prudent withdrawals

and hence a reduction in the number of competitors entering the field

of battle. In particular, those elites who foresee that their own candi-

dates . . . will bear the brunt of strategic desertion are likely to decide that

mounting a (hopeless) campaign is not worth the cost, and seek instead

to throw their support behind more viable candidates . . . (Cox, 151)
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Note that, in this view, Duverger’s Law can be explained as the political elites’

reaction to or anticipation of strategic voting by the electorate and thus strategic

voting is a necessary ingredient of the process by which the Law emerges. In addition,

Morelli (2004) presents a model of party formation in which strategic politicians

decide whether or not to become candidates, which in turn drives the formation of

governing coalitions. As in this paper, Morelli observes that the strategic choices of

candidates can substitute for the strategic choices of voters. However, in Morelli’s

model, Duverger’s Law may or may not hold, depending on the values of certain

parameters. In our model, on the other hand, Duverger’s Law always holds.

In addition to our support for Duverger’s Law, our model touches on another,

seemingly unrelated issue—the dimensionality of political competition. Is politics

inherently complex, with many crosscutting issues, or can this complexity be under-

stood by summarizing it as a single dimension of “ideology”? Based on their analysis

of roll-call data, Poole and Rosenthal (1985, 1991, 1997, 2001) have long argued that

a single dimension can explain the vast majority of political competition. Their argu-

ments, however, are purely empirical and they do not offer a theoretical explanation

for this empirical regularity.

In this paper, we offer just such a theoretical explanation. In addition to showing

Duverger’s Law holds, the second main result of the paper is that, in equilibrium,

competition occurs on only one of the two dimensions of the issue space. On one

issue, the two candidates in the race have different positions, but on the other issue,

the two candidates have the same position. The reason that this result holds is

that a Duvergerian outcome in which two candidates hold opposing views on both

issues invites entry by a third candidate. Thus, such a configuration cannot occur in

equilibrium. In this way, our model goes beyond Duverger’s Law to establish a link

between the electoral system and the dimensionality of political competition.

The paper is organized as follows. The next section presents the assumptions and

notation of the model. Section 3 discusses some features of Poisson games that are

useful for the results, which are presented in section 4. In this section, we give two

main results; exactly two candidates choose to compete in equilibrium and the two

candidates compete along a single issue. The final section presents our conclusions.
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2 The Model

We begin by defining the issue space. We suppose that there are two issues at

hand and, on each issue, there are only two possible stances; for example, “For”

and “Against” or “Yes” and “No”. For instance, one of the issues could be whether

or not to go to war with another country and the other issue could be whether or

not abortion should be legal or illegal. We denote the “For” stance by 1 and the

“Against” stance by 0. Let x1 be a stance on the first issue and x2 be a stance on the

second issue. Then a stance on both issues is a pair (x1, x2) and we therefore have

a discrete issue space consisting of the four possible positions on the two questions,

X = {(1, 1), (1, 0), (0, 1), (0, 0)}. An element of X is x = (x1, x2). The four possible

positions make up a unit square. For a position x, we refer to the two positions that

differ from x in only one component as adjacent positions and the remaining position

(different on both issues) as the opposed position to x. Formally, if x = (x1, x2), then

the two adjacent positions to x are the positions (1− x1, x2) and (x1, 1− x2) and the

opposed position to x is the position (1− x1, 1− x2)

Each voter in the electorate has an ideal point in X. We assume the number

of voters with each ideal point is stochastic. In particular, we suppose the number

of voters in the electorate is distributed according to a Poisson distribution with

mean λ and that each voter is (independently) assigned an ideal point according to a

probability distribution (π1, π2, π3, π4) on X. We assume π1 > π2 > π3 > π4 and that

these probabilities are assigned to the four possible positions as shown in Figure 1.2

Thus, we refer to position 1, located at (0, 0), as the most popular position, and

position 4, located (1, 0), as the least popular position, and so on, because position 1

is expected to have the largest share of voters and position 4 is expected to have the

smallest share of voters, and so on.

Voters vote sincerely, that is to say they each vote for the candidate whose issue

stance is closest to their own. If there are two such candidates, we assume that a

voter votes for each of the two with equal probability. The winner of the election is

determined by plurality rule, again with ties broken randomly with equal probability.

2There are two other orderings of these probabilities that are not obtainable by symmetric rotation
or reflection of the assumed ordering. Although our results also hold for these orderings, for simplicity
we develop our arguments for the assumed configuration only.
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Figure 1: Distribution of a voter’s ideal point

In addition to voters, we suppose that there is a set of potential candidates, which

we denote C. The total number of potential candidates is |C |.3 Each potential can-

didate can either enter the race (choose In) or stay out of the race (choose Out). We

can think of potential candidates as having established positions before the campaign,

which they cannot credibly commit to change, or that candidates cannot credibly

commit to enact a policy different from their ideal point. In either case, a potential

candidate’s only decision is whether to enter the race or not. We denote the action In

by 1 and the action Out by 0. Thus a strategy for potential candidate i is si ∈ {0, 1}.
Regardless of their participation decision, potential candidates care only about

the policy enacted by the winner. That is, candidates are purely policy-motivated.

We suppose that each candidate has quadratic preferences, defined in the usual way.

Specifically, we suppose that a potential candidate with ideal point x̂i ∈ X has a

utility function given by

ui(xw) = −‖x̂i − xw‖2,

where xw is the policy of the winning candidate. Uncertainty in the election outcome

is evaluated by expected utility, as usual. We assume that, for each of the four issue

3Here, and in what follows, we use | · | to represent the number of elements in a set.
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positions, there is at least one potential candidate with ideal point at that issue

position. We also assume that if none of the potential candidates enters the race,

then the enacted policy xw is randomly determined according to a given probability

distribution q = (q1, q2, q3, q4) on X.4

To finish the description of the model, we assume that the potential candidates

make their participation decisions simultaneously, and the election is decided by voters

voting sincerely over the set of candidates who have chosen to enter the race. For a

strategy profile s, we denote the set of candidates who choose In by E(s). We define

this set formally by

E(s) = {i ∈ C | si = 1}.

A (pure strategy) Nash equilibrium is a profile of strategies s∗ = (s∗1, . . . , s
∗
|C |) such

that no potential candidate has a positive incentive to change their entry decision,

given the actions of the other potential candidates.5 If a strategy profile s includes at

least one potential candidate with ideal point x who enters the race, then we say that

x is occupied under s. Otherwise, we say that x is unoccupied under s. Formally, the

set of occupied positions given s is

O(s) = {x ∈ X | there exists i ∈ E(s) such that x̂i = x.}

As the distribution of voters is stochastic, every candidate who participates in the

election has a positive probability of winning. We denote this probability by pi(s),

where we indicate the dependence of this probability on the participation decisions

of the other candidates. Note that pi(s) > 0 for all i ∈ E(s) and pi(s) = 0 for all

i 6∈ E(s).

3 Poisson Games

In this model, the number of voters is randomly chosen from a Poisson distribution

with parameter λ. Thus, the model is a Poisson game as described by Myerson

4There are no restrictions placed on this distribution. In particular, we permit q to be a degenerate
distribution that corresponds to a given “status quo” policy that will be enacted if no candidate
runs.

5For simplicity, we restrict our attention to pure strategy equilibria of the model.
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(1998b).6 In this section, we review some features of these games and provide some

useful approximation results.

Recall that a random variable X has a Poisson distribution with mean λ if

P[X = k] =
e−λλk

x!
for k = 0, 1, . . . .

The Poisson distribution has two properties that we rely on in our analysis. The first

property, termed aggregation, is that the sum of Poisson distributions is a Poisson

distribution. Specifically, if Y1, Y2, . . . , Yk are independent Poisson random variable

with means λ1, λ2, . . . , λk, respectively, then Y1+Y2+· · ·+Yk has a Poisson distribution

with mean λ1 + λ2 + · · ·+ λk.

The second property is known as decomposibility or splitting. Suppose that the

number of objects to be considered is a Poisson random variable X with mean λ

and suppose each object is assigned to one of k categories according to a probability

distribution (ρ1, . . . , ρk), where ρi is the probability that the object is assigned to

category i. Then, if we denote the number of objects assigned to category i by the

random variable Xi, then Xi is itself distributed according to a Poisson distribution

with mean ρiλ and the collection of random variables X1, . . . , Xk so defined are mu-

tually independent. For our model, this property implies that number of voters with

ideal point at position i is a Poisson random variable with mean πiλ.

The results in the next section turn on the effect of the participation choice of a

given potential candidate on the probabilities that candidates at various positions will

win. The following proposition gives a useful approximation to these probabilities.

As is standard, we use the notation h(λ) ∼ g(λ) for the fact that h(λ)/g(λ) → 1 as

λ →∞.

Proposition 1 Let (ρ1, . . . , ρM) be a vector such that ρ1 > ρ2 > · · · > ρM , ρi > 0 for

i = 1, . . . , M , and
∑M

1 ρi = 1. Let X1, X2, . . . , XM be independent random variables

distributed according to a Poisson distribution with means λ1, λ2, . . . , λM , where λi =

ρiλ. Let Wi be the event that Xi is the maximum of X1, X2, . . . , XM . Then, for i 6= 1

P[Wi] ∼ 1√
2πλ ci

e−
1
2
λc2i ,

6See also Myerson (1998a, 2000) and Voorneveld (2002).
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and

P[W1] ∼ 1− 1√
2πλ c2

e−
1
2
λc22 ,

where

ci =
ρ1 − ρi√
ρ1 + ρi

.

This approximation is developed in Appendix A.

Intuitively, we think of Xi as the number of votes that candidate i receives. This is

a random variable, with mean λi. Thus, the candidate may receive an actual share of

the vote that is higher or lower than λi. Proposition 1 shows that, in a large electorate,

the probability that the expected winner (the most popular candidate) is the actual

winner is very close to 1. Moreover, while the probability that the expected runner-up

wins is small, it is exponentially larger than the probability that the expected third-

place candidate wins, which in turn is exponentially larger than the probability that

the expected fourth-place finisher wins, and so on. This is similar to the “ordering

condition” of Myerson and Weber (1993) and the “magnitude theorem” of Myerson

(2000).

As the results presented in the next section rely on the approximation presented

in Proposition 1, our arguments are only valid for sufficiently large electorates. In

particular, as λ parameterizes the expected number of voters in the electorate, we say

that a strategy profile is an equilibrium in large electorates if there exists λ0 such that

for all λ ≥ λ0, the profile is a Nash equilibrium in the Poisson game with parameter

λ.

4 Results

In this section we present our main results characterizing the equilibria of our model.

We will show that, in equilibrium, exactly two potential candidates choose to enter

the race and that they compete on only one issue. Thus, Duverger’s Law holds in the

model and the nature of equilibrium political competition is one-dimensional.

In order to establish our main results, we present a sequence of lemmas, whose
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proofs are given in Appendix B. We begin by noting that there can be no equilibrium

in which only one position is occupied or in which no potential candidates choose to

enter.

Lemma 1 There is no equilibrium in large electorates such that |O(s∗) | ≤ 1.

It is easy to see why there can be no such equilibrium. If there were an equilibrium

with just one occupied position, then a potential candidate at an unoccupied position

could choose In and receive her ideal point with some probability, instead of the

sole occupied position with probability 1. Likewise, it cannot be an equilibrium for

all potential candidates to choose not to run. If no candidate runs, the outcome is

randomly determined. A potential candidate would then have an incentive to enter

the race and enact her ideal policy.

Next, we show that there can be no equilibrium in which some position has more

than one potential candidate choosing to enter the race.

Lemma 2 There is no equilibrium in large electorates such that i, j ∈ E(s∗), i 6= j,

and x̂i = x̂j.

To understand the logic behind this lemma, consider the situation in which all four

positions are occupied. In this case, a participating candidate receives votes only

from voters with a matching ideal point. If a position, say x, is occupied by two

or more candidates, they have the effect of splitting (equally) these votes. If one of

the candidates competing at x drops out of the race, this increases the probability

that a candidate at x will win, while leaving unchanged the probability that a can-

didate not at x will win. This same argument applies to the case of two or three

occupied positions, as well. Finally, Lemma 1 rules out the case of fewer than two

occupied positions. Thus, in any equilibrium, no position is occupied by more than

one candidate.

Having established these simple necessary conditions, we now turn to more com-

plex arguments. We begin by showing that there cannot be an equilibrium in which

all four policy positions are occupied.

Lemma 3 There is no equilibrium in large electorates such that O(s∗) = X.
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The intuition for this result is that if all four positions were occupied, the candidate

at the least popular position would prefer to exit the race and help the two adjacent

candidates and hurt the opposed candidate. This follows because, in a large electorate,

the probability that the least popular candidate will win is very close to zero. Thus,

for the least popular candidate, the “cost” of dropping out the race (the foregone

chance of winning) is more than offset by the benefit gained by making it more likely

that a candidate at an adjacent position will win.

Having ruled out equilibria in which all four positions are occupied, we next show

that there cannot be an equilibrium in which there are three occupied positions.

Lemma 4 There is no equilibrium in large electorates such that |O(s∗) | ≥ 3.

The logic operating in this lemma is very similar to the logic of Lemma 3. With three

occupied positions, the least popular candidate again has an incentive to drop out of

the race because her chance of winning is essentially zero, but by dropping out, she

can increase the chance that the candidate at the adjacent position will win instead

of the candidate at the opposed position.

Lemmas 3 and 4 capture how the logic of Duverger’s Law works on the strategic

calculations of the candidates in this model. Because potential candidates are purely

policy-motivated, they care only about the final policy outcome, and because voters

are sincere, a candidate who withdraws from the race transfers her votes to nearby

candidates with similar policy positions. For a candidate in last place in a multican-

didate race, this means dropping out can increase the chance that the winning policy

will be one she prefers.

Combining Lemmas 1 and 4, we see that any equilibrium must have exactly two

occupied positions. By Lemma 2, each of these two positions must be occupied by a

single candidate. Therefore, in any equilibrium, exactly two candidates compete. We

state this important result as Theorem 1.

Theorem 1 For any equilibrium in large electorates, |E(s∗) | = 2.

The substantive importance of this Theorem is that, in our model, Duverger’s Law

must hold. Moreover, the Duvergerian conclusion of the Theorem that only two

candidates compete in the election flows not from strategic voting by the electorate
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but rather from the choices of strategic policy-motivated politicians about whether

or not to become candidates.

It is important to note that the conclusion of Theorem 1 does not depend on the

particular choice of which positions are most popular and which are the least popular.

In particular, it does not depend on our assumption that the popularity of positions is

ordered as in Figure 1. Rather, Theorem 1 holds for all orderings of the popularity of

positions. Thus, the Duvergerian conclusion of this Theorem is a general conclusion

of the model.

We next turn to a more detailed characterization of the issue positions involved in

the election. We begin by showing that the two occupied positions cannot be opposed

positions.

Lemma 5 There is no equilibrium in large electorates such that O(s∗) = {(x1, x2), (1−
x1, 1− x2)} for some (x1, x2) ∈ X.

The argument behind this Lemma is straightforward. Suppose two opposed positions

were occupied but the other two positions were unoccupied. Then, whichever occu-

pied position wins, the winning position will be one unit away from the unoccupied

positions. This gives a potential candidate at one of the unoccupied positions an

equilibrium payoff of −1. On the other hand, if this potential candidate chooses to

enter the race, then she wins with some positive probability, giving utility 0, and

one of the adjacent positions wins with the remaining probability, giving utility −1.

Thus, no matter how small the probability that the entrant wins, this is a profitable

deviation. So there can be no equilibrium with exactly two occupied and opposed

positions.

Combining all of the lemmas presented so far, we conclude that the only possible

equilibria of this model involve two adjacent occupied positions. Our last lemma

shows that in any such equilibrium, the most popular position (corresponding to π1)

must be occupied.

Lemma 6 There is no equilibrium in large electorates such that (0, 0) /∈ O(s∗).

To see why the most popular position must be occupied in equilibrium, suppose there

were an equilibrium with this position unoccupied. Then, by the previous lemmas,

11
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Figure 2: Unique equilibrium outcome

the two occupied positions must be adjacent. There are two possible arrangements

in which this occurs. In either case, a potential candidate whose ideal point is at

the most popular position could choose to enter the race and win with probability

near 1. This is clearly a better outcome for this candidate and so there cannot be an

equilibrium in which the most popular position is unoccupied.

We are now ready to establish that an equilibrium in large electorates exists. We

also show that in any such equilibrium, the two most popular positions are occupied.

Theorem 2 An equilibrium in large electorates exists. In any equilibrium in large

electorates, |E(s∗) | = 2 and O(s∗) = {(0, 0), (1, 0)}.

This result establishes that an equilibrium exists in our model. Moreover, Theorem 2

establishes that there exists a unique equilibrium outcome in our model which is

illustrated in Figure 2. To be clear, although there is a unique equilibrium outcome,

there are multiple equilibria which differ only by which potential candidate at each

of the two most popular positions is the one that enters the race.

There are two parts to the proof of the Theorem 2. The first part establishes that

a strategy profile in which two candidates enter the race, one at (0, 0) and one at

(1, 0), is an equilibrium. To see this, note that neither of these two candidates wants
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to exit the race and no other potential candidate at one of these positions wants to

enter. Moreover, by the same logic used to prove Lemma 4, no potential candidate

wants to enter the race at a different position. This means that an equilibrium exists.

The second part of the proof establishes that this is the unique equilibrium outcome.

Given the above Lemmas, it suffices to show that there cannot be an equilibrium with

one candidate at (0, 0) and the other at (0, 1). This is accomplished by showing that,

in this case, a potential candidate at (1, 0) wants to enter the race.

The substantive importance of Theorem 2 is that not only does Duverger’s Law

hold, but equilibrium political competition is unidimensional, even though the issue

space is multidimensional. That is, the two candidates in the race choose different

positions on one issue and identical positions on the other issue. Indeed, the issue

that candidates choose to compete on the more “popular” of the two issues. Thus,

Theorem 2 provides a theoretical rationale for models that assume candidates compete

on a unidimensional issue space.

As with Theorem 1, the result in Theorem 2 that equilibrium political competition

is unidimensional does not depend on our assumption that the popularity of positions

is ordered as in Figure 1. This result is true no matter how voters are distributed on

X. Of course, our result that candidates compete on the most “popular” issue does

depend on the arrangement of ideal points. For example, if the two most popular

positions were opposed, then by Lemma 5, they cannot be equilibrium positions. In

this case, the equilibrium would involve the first and third most popular positions

being occupied.

5 Conclusion

In this paper, we have developed a model of Duverger’s Law that focuses on partici-

pation decisions by policy-motivated parties as an explanation for the Law. Thus, we

have shown that elite actions are a sufficient explanation, without requiring strate-

gic voting behavior by the electorate. This is important because some scholars have

argued that voters seldom vote strategically in real elections. The results presented

here suggest such a finding may not invalidate the predictions of Duverger’s Law. At

the same time, our model also offers an explanation as to why parties may sometimes
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jointly nominate a single candidate. Finally, our finding that the most popular posi-

tion is always occupied in equilibrium suggests that plurality rule does well in terms

of representation, even when only two candidates compete.

Much work remains to be done along these lines. In this paper, we work with

a discrete two-dimensional issue space with only four possible positions. This could

be generalized in several ways. One simple extension would be to consider more

binary issues, so that the issue space would be the corners of a cube, for example.

Another natural extension would be a model with a continuous issue space in one or

more dimensions. Based on preliminary work, we suspect that versions of our results

would continue to hold, but we leave this for future work.

Another aspect of the model to consider is the motivations of potential candidates.

The candidates in the present model are purely policy-motivated, placing no value

on holding office. In fact, the proofs of our results would permit us to relax this

assumption and allow potential candidates to place a small value on holding office.

At some point, however, as entry is costless, a sufficiently large value of holding office

would induce potential candidates to enter and would lead to a non-Duvergerian

outcome. Exactly how large the value of holding office needs to be in this case is an

open question.

Finally, it would be interesting to explore a model in which some voters were

strategic and some were sincere. In addition to being more realistic, such a model

would offer insight into the connection between the incentives for political coordina-

tion on the mass level and on the elite level, as in Cox (1997). As it stands, the

present model offers a step in this direction.

14



Appendix A

In this appendix, we present the approximation results supporting Proposition 1.

Let (ρ1, . . . , ρM) be a vector such that ρ1 > ρ2 > · · · > ρM , ρi > 0 for i = 1, . . . , M ,

and
∑M

1 ρi = 1. Let X1, X2, . . . , XM be independent random variables distributed

according to a Poisson distribution with means λ1, λ2, . . . , λM , where λi = ρiλ. We

identify Xi as the number of voters casting votes in favor of candidate i.

We are interested in the probability that Xi > Xj for all j 6= i.7 Call this event

Wi. We approximate this probability by the probability that Xi > X1 for all i 6= 1

and the probability that X1 > X2 for i = 1. This is justified by a large deviations

argument that the probability that i comes in first ahead of k 6= 1 is exponentially

less likely than coming in ahead of 1.

We begin by noting that P[Xi > X1] = P[Xi − X1 > 0] and P[X1 > X2] =

P[X1 − X2 > 0]. To estimate this probability, we use the fact that the limiting

distribution of a difference of Poisson distributions is normal (Johnson et al., 1992).

In particular, Xi−Xj is approximately distributed as N(λi−λj, λi +λj). Now as we

suppose P[Xi−X1 > 0] is very close to zero, we can use the standard approximation

for the tails of a normal distribution. This is, for large x, 1 − Φ(x) ∼ (1/x)φ(x),

where φ(x) and Φ(x) are the density and distribution of a unit normal, respectively.

Combining all of these approximations, we find that

P[Wi] ∼
√

λ1 + λi√
2π(λ1 − λi)

exp

[
− (λ1 − λi)

2

2(λ1 + λi)

]

∼ 1√
2πλ ci

e−
1
2
λc2i ,

where

ci =
ρ1 − ρi√
ρ1 + ρi

.

The second expression in the proposition follows from the fact that P[X1 −X2 >

0] = 1− P[X2 −X1 > 0].

7As the means of the random variables are large, we ignore the possibility of a tie.
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Appendix B

In this appendix, we provide proofs of the results in the text. Throughout this

appendix, we label the positions in X as in Figure 1, with position 1 at x1 = (0, 0),

position 2 at x2 = (1, 0), and so on. We define the set of potential candidates and

entrants with ideal point at position k by Ck and Ek(s), respectively.

Proof of Lemma 1: First, suppose s∗ is an equilibrium with exactly one occupied

position, say position xk. Then a potential candidate i /∈ Ek(s∗) receives equilibrium

utility ui(x
k) < 0. If i deviates to entering the race, resulting in the strategy profile

s′, her utility is

pi(s
′)(0) + (1− pi(s

′))ui(x
k).

As pi(s) > 0 for all s, this a profitable deviation. Second, suppose s∗ is an equilibrium

with no occupied positions, so E(s∗) is empty. In this case, xw is determined according

to the distribution q = (q1, q2, q3, q4) on X. Pick k such that qk < 1. In this case, a

potential candidate i ∈ Ck receives a negative payoff in equilibrium. If i deviates to

entering the race, her utility is zero. This is a profitable deviation. Thus, in neither

case is s∗ a Nash equilibrium.

Proof of Lemma 2: Suppose s∗ an equilibrium in large electorates such that i, j ∈
E(s∗), i 6= j, and x̂i = x̂j. Let M = |E(s∗) | and let mk = |Ek(s∗) |. We will examine

in detail the case in which all four positions are occupied in equilibrium. The other

cases are similar. If all positions are occupied, the total vote share split among the mk

candidates at position k is Poisson with mean λπk. Therefore, by decomposability of

the Poisson, the vote share for candidate i ∈ Ek(s∗) is Poisson with mean λρi, where

ρi = πk/mk.

Now, consider a position l and a potential candidate j ∈ El(s∗) such that ml > 1

and ρj < maxi ρi. Again, the case in which ρj is the maximum is similar. Then, in

equilibrium, the probability that one of the candidates with ideal point at position l

wins is mlpj(s
∗). Now suppose that candidate j switches her strategy to Out, resulting

in the strategy profile s′. In this case, the voters at position l will split their votes

equally between the remaining candidates at position l. Therefore, the probability

that one of the candidates with ideal point at position l wins is (ml − 1)pj(s
′). Let
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ρ′j = πj/(ml − 1). We claim that

(ml − 1)pj(s
′) > mlpj(s

∗).

To see this, note that by Proposition 1, for sufficiently large λ, this inequality is well

approximated by

ml − 1√
2πλ c′i

e−
1
2
λ(c′i)

2

>
ml√

2πλ ci

e−
1
2
λc2i

e
1
2
λ[c2i−(c′i)

2] >
ml

ml − 1

c′i
ci

,

where ci = (ρ1 − ρi)/(
√

ρ1 + ρi) and c′i = (ρ1 − ρ′i)/(
√

ρ1 + ρ′i). As the right hand

of the last inequality is a constant, if c2
i − (c′i)

2 > 0, then this inequality will hold in

large electorates. But c2
i > (c′i)

2 follows directly from that fact that ρ′j > ρj, so the

claim is proven.

Therefore, if candidate j deviates to Out, the probability that some candidate at

position l wins the election increases. It is straightforward to see that after this devi-

ation, the probability that some other position wins does not increase. Therefore, the

deviation by candidate j is profitable, so the strategy profile s∗ is not an equilibrium

in large electorates.

Proof of Lemma 3: Suppose s∗ an equilibrium in large electorates such that O(s∗) =

X. By Lemma 2 there must be exactly one candidate at each position. Assign the

candidates the number of their position and examine candidate 4. The equilibrium

payoff for this candidate is

p4(s
∗)(0) + p1(s

∗)(−1)+p2(s
∗)(−2) + p3(s

∗)(−1)

= −[p1(s
∗) + p3(s

∗) + 2p2(s
∗)]

= −[p1(s
∗) + (1− p1(s

∗)− p2(s
∗)− p4(s

∗)) + 2p2(s
∗)]

= −[1 + p2(s
∗)− p4(s

∗)].

Now suppose that candidate 4 switches her strategy to Out, resulting in the strat-

egy profile s′. In this case, the voters at position 4 will split their votes between
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candidates 1 and 3. Thus, the three remaining candidates will have vote shares dis-

tributed Poisson with mean λ1+λ4/2 for candidate 1, λ2 for candidate 2, and λ3+λ4/2

for candidate 3. The payoff to candidate 4 for this alternative strategy is

−[p1(s
′) + p3(s

′) + 2p2(s
′)] = −[p1(s

′) + 1− p1(s
′)− p2(s

′) + 2p2(s
′)]

= −[1 + p2(s
′)].

Thus, this deviation by candidate 4 is profitable if

p2(s
∗)− p4(s

∗) > p2(s
′)

(p2(s
∗)− p4(s

∗))/p2(s
′) > 1.

By Proposition 1, for sufficiently large λ, p2(s
∗)/p2(s

′) is well approximated by

c′2
c2

e−
1
2
λ(c22−c′22 ), (1)

where c2 = (π1−π2)/
√

π1 + π2 and c′2 = (π1 + 1
2
π4−π2)/

√
π1 + 1

2
π4 + π2. From this,

we note that

c2
2 − c′22 =

(π1 − π2)
2

π1 + π2

− (π1 + 1
2
π4 − π2)

2

π1 + 1
2
π4 + π2

=
(1

2
π4)(π1 − π2)

2 − (π1 + π2)(
1
2
π4)(π1 − π2)− (π1 + π2)(

1
2
π4)

2

(π1 + π2)(π1 + 1
2
π4 + π2)

=
−π4(π1 − π2)(π2)− (π1 + π2)(

1
2
π4)

2

(π1 + π2)(π1 + 1
2
π4 + π2)

< 0.

Therefore, expression 1 goes to infinity as λ → ∞. A similar argument shows that

p4(s
∗)/p2(s

′) goes to zero as λ → ∞. We conclude that a profitable deviation exists

for sufficiently large values of λ, so the strategy profile s∗ is not an equilibrium in

large electorates.

Proof of Lemma 4: Suppose s∗ an equilibrium in large electorates such that |O(s∗) | ≥
3. By Lemma 3, |O(s∗) | 6= 4, so there must be exactly three occupied positions. By

Lemma 2 there must be exactly one candidate at each position. Assign the candi-
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dates the number of their position. We will examine in detail the case in which the

unoccupied position is position 4. The other cases are similar. Under s∗, the three

occupied positions will have vote shares distributed Poisson with mean λ1 + λ4/2 for

candidate 1, λ2 for candidate 2, and λ3+λ4/2 for candidate 3. If candidate 3 switches

her strategy to Out, resulting in the strategy profile s′, then the vote shares will be

distributed Poisson with mean λ1 + λ4 for candidate 1, and λ2 + λ3 for candidate 2.

Candidate 3’s equilibrium payoff is

p3(s
∗)(0) + p2(s

∗)(−1) + p1(s
∗)(−2) = −[p2(s

∗) + 2(1− p3(s
∗)− p2(s

∗))]

= −[2− p2(s
∗)− 2p3(s

∗)],

and her payoff from deviating to s′ is

−[p2(s
′) + 2p1(s

′)] = −[p2(s
′) + 2(1− p2(s

′))

= −[2− p2(s
′)].

Thus, the deviation is profitable if

p2(s
′) > p2(s

∗) + 2p3(s
∗)

(p2(s
∗) + 2p3(s

∗))/p2(s
′) < 1.

If π2 + π3 > π1 + π4, then p2(s
′) is very close to 1 and the numerator is very close to

0, so the deviation is clearly profitable. So suppose that π2 + π3 < π1 + π4. Then by

Proposition 1, for sufficiently large λ, p2(s
∗)/p2(s

′) is well approximated by

c′2
c2

e−
1
2
λ(c22−c′22 ), (2)

where c2 = (π1 + 1
2
π4−π2)/

√
π1 + 1

2
π4 + π2 and c′2 = (π1 +π4−π2−π3). Once again,

we consider

c2
2 − c′22 =

(π1 + 1
2
π4 − π2)

2

π1 + 1
2
π4 + π2

− (π1 + π4 − π2 − π3)
2
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=
(π1 + 1

2
π4 − π2)

2 − (π1 + 1
2
π4 + π2)(π1 + π4 − π2 − π3)

2

π1 + 1
2
π4 + π2

=
(π1 + 1

2
π4 − π2)

2 − (π1 + 1
2
π4 + π2)((π1 + 1

2
π4 − π2) + (1

2
π4 − π3))

2

π1 + 1
2
π4 + π2

=
(π1 + 1

2
π4 − π2)

2[1− (π1 + 1
2
π4 + π2)]

π1 + 1
2
π4 + π2

− (π1 + 1
2
π4 + π2)(2(π1 + 1

2
π4 − π2)(

1
2
π4 − π3) + (1

2
π4 − π3)

2)

π1 + 1
2
π4 + π2

=
(π1 + 1

2
π4 − π2)

2[1− (π1 + 1
2
π4 + π2)]

π1 + 1
2
π4 + π2

+
(π3 − 1

2
π4)(π1 + 1

2
π4 + π2)(2π1 + 3

2
π4 − 2π2 − π3)

π1 + 1
2
π4 + π2

.

Inspecting this expression and recalling that π2 + π3 < π1 + π4, we find that all of

the terms are positive. Therefore, expression 2 goes to zero as λ → ∞. A similar

argument shows that p3(s
∗)/p2(s

′) goes to zero as λ → ∞. We conclude that a

profitable deviation exists for sufficiently large values of λ, so the strategy profile s∗

is not an equilibrium in large electorates.

Proof of Lemma 5: Suppose s∗ an equilibrium in large electorates such that exactly

two positions are occupied, and the occupied positions are opposed. In this case,

a candidate at an unoccupied position is indifferent over the two possible winning

positions and thus receives a payoff of −1 for sure. By deviating to In, such a

candidate can win with some probability and receive utility 0, and otherwise receives

utility −1. This is a beneficial deviation, and thus s∗ is not an equilibrium.

Proof of Lemma 6: Suppose s∗ an equilibrium in large electorates such that position 1

is not occupied. By Lemmas 1, 4, and 5, it must be that either positions 2 and 3 or

positions 3 and 4 are occupied. Let candidate i be a potential candidate with ideal

point at position 1. The equilibrium payoff for i is clearly less than or equal to −1.

Now suppose that candidate i switches her strategy to In, resulting in the strategy

profile s′. This results in a payoff to candidate i of at least

pi(s
′)(0) + (1− pi(s

′))(−2) = (1− pi(s
′))(−2).
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Given that π1 > π2 > π3 > π4, it is easy to check that regardless of whether positions

2 and 3 or positions 3 and 4 are occupied, the expected vote for candidate i is strictly

larger than the expected vote of either of the other two candidates in the race. Thus,

by Proposition 1, for sufficiently large λ, pi(s
′) is approximately one. We conclude

that this is a beneficial deviation and thus s∗ is not an equilibrium in large electorates.

Proof of Theorem 2: By Lemmas 1, 4, 5, and 6, an equilibrium in large electorates

can exist only if it involves a single candidate at positions 1 and 2 or at positions 1

and 4. We will show that the former situation is an equilibrium in large electorates

and the latter situation is not. So suppose s∗ is such that |E(s∗) | = 2 and |E1(s∗) | =
|E2(s∗) | = 1. Clearly, neither candidate i ∈ E1(s∗) nor candidate j ∈ E2(s∗) prefers

to exit the race and no other candidate in C1 or C2 prefers to enter the race. Lemma 4

shows that no potential candidate in C3 wants to enter the race and a straightforward

modification of the argument in the proof of this lemma shows that no candidate in

C4 wants to enter, either. We conclude that s∗ is an equilibrium in large electorates.

To establish that this equilibrium outcome is unique, we need only show that it

is not an equilibrium for a single candidate to be at positions 1 and 4. Suppose not.

That is, suppose s∗ is an equilibrium in large elections such that |E(s∗) | = 2 and

|E1(s∗) | = |E4(s∗) | = 1. Then under s∗, the candidate at position 1 will have a vote

share distributed Poisson with mean λ1 +λ2 and the candidate at position 4 will have

a vote share distributed Poisson with mean λ4 + λ3. If some candidate at position 2

switches her strategy to In, resulting in the strategy profile s′, then the vote shares

will be distributed Poisson with mean λ1 for the candidate at position 1, λ2 + λ3/2

for the candidate at position 2, and λ4 + λ3/2 for the candidate at position 4.

The equilibrium payoff of the candidate at position 2 is

p1(s
∗)(−1) + p4(s

∗)(−2) = (1− p4(s
∗))(−1)− 2p4(s

∗)

= −1− p4(s
∗),

and her payoff from deviating to s′ is

p2(s
′)(0) + p1(s

′)(−1) + p4(s
′)(−2) = (1− p2(s

′)− p4(s
′))(−1)− 2p4(s

′)
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= −1− p4(s
′) + p2(s

′).

Thus, the deviation is profitable if

p2(s
′)− p4(s

′) > −p4(s
∗).

Indeed, it is sufficient to show that p2(s
′) > p4(s

′). But this follows directly from the

fact that the expected vote share for the candidate at position 2 under s′ is larger

than the expected vote share for the candidate at position 4. Therefore, s∗ is not an

equilibrium in large electorates and the proof is complete.
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