Skip to content
Science & Technology

New data about asteroid surfaces will help explorers touch down safely

Artist’s rendition of the OSIRIS-REx robotic explorer collecting samples on the Bennu asteroid's surface. (NASA's Goddard Space Flight Center image)
Using sand, marbles, and mathematical modeling, Rochester researchers are improving the accuracy of data collected from the surfaces of asteroids.

Recent NASA missions to asteroids have gathered important data about the early evolution of our Solar System, planet formation, and how life may have originated on Earth. These missions also provide crucial information about how to deflect asteroids that could hit Earth.

Missions like the OSIRIS-REx mission to asteroid Bennu and Japan’s Hayabusa 2 mission to asteroid Ryugu are often conducted by robotic explorers that send images back to Earth showing complex asteroid surfaces with cracked, perched boulders and rubble fields.

In order to better understand the behavior of asteroid material and design successful robotic explorers, researchers must first understand exactly how these explorers impact the surface of asteroids during their touchdown.

Researchers from the University of Rochester’s Department of Physics and Astronomy, including Alice Quillen, a professor of physics and astronomy, and Esteban Wright, a graduate student in Quillen’s lab, conducted lab experiments before the quarantine lockdown in March to determine what happens when explorers and other objects touch down on complex, granular surfaces in low-gravity environments. Their research, published in the journal Icarus, provides important information in improving the accuracy of data collection on asteroids.

“Controlling the robotic explorer is paramount to mission success,” Wright says. “We want to avoid a situation where the lander is stuck in its own landing site or potentially bounces off the surface and goes in an unintended direction. It may also be desirable for the explorer to skip across the surface to travel long distances.”

The researchers used sand to represent an asteroid’s surface in the lab. They then used marbles to measure how objects impact the sandy surfaces at different angles, and filmed the marbles with high-speed video in order to track the marbles’ trajectories and spin during impact with the sand.

“Granular materials like sand are usually quite absorbent upon impact,” Quillen says. “Similar to a cannonball ricocheting off of water, pushed sand can act like a snow in front of a snowplow, lifting the projectile, causing it to skip off the surface.”

Collaborating with members of Rochester’s Departments of Mechanical Engineering, Earth and Environmental Sciences, and Computer Science, the researchers constructed a mathematical model that includes the Froude number, a dimensionless ratio that depends on gravity, speed, and size. By scaling the model with the Froude number, the researchers were able to apply the knowledge gained from their experiments with the marbles to low-gravity environments, such as those found on asteroid surfaces.

“We found that at velocities near the escape velocity—the velocity at which an object will escape gravitational attraction—many if not most rocks and boulders are likely to ricochet on asteroids,” Wright says.

The results provide an explanation for why asteroids have strewn boulders and rocks that are perched on their surfaces, and they also influence the angle at which robotic missions will need to successfully touch down on the surface of an asteroid.

“Robotic missions that touch down on the surface of an asteroid will need to control the moment of touch down so that they don’t bounce,” Quillen says. “The robots can accomplish this by making their angle of impact nearly vertical, by reducing the velocity of impact to a very small value, or by making the velocity of impact large enough to form a deep crater that the robotic explorer won’t bounce out of.”

Grants from NASA and the National Science Foundation supported this research.

Read more

exoplanets orbit a sun beyond our solar system.Does intelligent life exist on other planets? Technosignatures may hold clues
Adam Frank, professor of physics and astronomy, is searching for the physical and chemical traces of advanced civilizations, among the 4,000 or so exoplanets scientists have found so far.
Tiny figurines placed on graph paper connected by black lines.Mathematical model will monitor spread of COVID-19
Computational scientists win a National Science Foundation grant to develop a tool to provide accurate, timely information to local-level policymakers monitoring the spread of COVID-19.
glow over earth's horizon.Research provides new insights into the evolution of stars
The High-Energy-Density Physics Theory Group at the Laboratory for Laser Energetics studied how matter under high-pressure conditions might emit or absorb radiation.


Return to the top of the page